会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Storage apparatus having a planar electron emitter
    • 具有平面电子发射体的存储装置
    • US06989628B2
    • 2006-01-24
    • US11083680
    • 2005-03-16
    • Henryk BireckiVu Thien Binh
    • Henryk BireckiVu Thien Binh
    • H01J1/62
    • B82Y10/00G11B9/10H01J1/308H01J1/312
    • The field emission planar electron emitter device is disclosed that has an emitter electrode, an extractor electrode, and a planar emitter emission layer, electrically coupled to the emitter electrode and the extractor electrode. The planar electron emitter is configured to bias electron emission in a central region of the emission layer in preference to an outer region thereof. One structural example that provides this biasing is achieved by fabricating the planar emitter emission layer so that it has an outer perimeter that is thicker in depth than at an interior portion of the planar emitter emission layer, which reduces electron beam emission at the outer perimeter when an electric field is applied between the emitter electrode and the extractor electrode. The electric field draws emission electrons from the surface of the planar emitter emission layer towards the extractor electrode at a higher rate at the interior portion than at the outer perimeter. The planar electron emitter device further includes a focusing electrode electrically coupled to the planar electron emitter.
    • 公开了具有电耦合到发射极和提取器电极的发射极,提取器电极和平面发射极发射层的场发射平面电子发射器件。 平面电子发射器被配置为优先于其外部区域在发射层的中心区域偏置电子发射。 提供该偏置的一个结构实例通过制造平面发射器发射层来实现,使得其具有比在平面发射极发射层的内部部分更深的深度的外周边,这减少了在外周边处的电子束发射, 在发射电极和提取电极之间施加电场。 电场在内部部分比在外周边以更高的速率将发射电子从平面发射体发射层的表面吸引到提取器电极。 平面电子发射器件还包括电耦合到平面电子发射器的聚焦电极。
    • 45. 发明授权
    • Injection cold emitter with negative electron affinity based on wide-gap semiconductor structure with controlling base
    • 基于具有控制基极的宽间隙半导体结构的具有负电子亲和力的注入冷发射体
    • US06577058B2
    • 2003-06-10
    • US09974818
    • 2001-10-12
    • Viatcheslav V. OssipovAlexandre M. BratkovskiHenryk Birecki
    • Viatcheslav V. OssipovAlexandre M. BratkovskiHenryk Birecki
    • H01L2912
    • H01J1/308
    • A cold electron emitter may include a heavily n+ doped wide band gap (WBG) substrate, a p-doped WBG region, and a low work function metallic layer (n+-p-M structure). A modification of this structure includes heavily p+ doped region between p region and M metallic layer (n+-p-p+-M structure). These structures make it possible to combine high current emission with stable (durable) operation. The high current density is possible because the p-doped (or p+ heavily doped) WBG region acts as a negative electron affinity material when in contact with low work function metals. The injection emitters with the n+-p-M and n+-p-p+-M structures are stable since the emitters make use of relatively low extracting electric field and are not affected by contamination and/or absorption from accelerated ions. In addition, the structures may be fabricated with current state-of-the-art technology.
    • 冷电子发射器可以包括重n +掺杂宽带隙(WBG)衬底,p掺杂WBG区和低功函数金属层(n + -p-M结构)。 该结构的修改包括p区和M金属层(n + -p-p + -M结构)之间的重p +掺杂区。 这些结构使得可以将高电流发射与稳定(耐用)操作相结合。 高电流密度是可能的,因为当与低功函数金属接触时,p掺杂(或p +重掺杂)WBG区域充当负电子亲和材料。 具有n + -p-M和n + -p-p + -M结构的注入发射体是稳定的,因为发射体使用相对低的提取电场,并且不受来自加速离子的污染和/或吸收的影响。 此外,结构可以用当前最先进的技术制造。
    • 47. 发明授权
    • Magneto-optical recording system having medium with domainless control
layer
    • 具有无域控制层介质的磁光记录系统
    • US4893910A
    • 1990-01-16
    • US168710
    • 1988-03-16
    • Henryk Birecki
    • Henryk Birecki
    • G11B5/02G11B11/10G11B11/105
    • G11B11/10591G11B11/10521
    • An information storage system records on a medium with a magneto-optical storage layer and a ferrimagnetic control layer. A higher power write beam is used to impose an upward magnetic orientation and a lower power write beam is used to impose a downward magnetic orientation in the domain. The control layer has an initial downward magnetic orientation, the magnetization of regions of the control layer can be inverted to an upward orientation temporarily while the region is heated above a compensation temperature. The magnetization of the region is restored to its initial downward orientation upon restoration of ambient temperature since neither the higher power nor the lower power write beam heats the control layer to its Curie temperature. The distributed optical and thermal properties of the medium are selected so that, upon heating of the medium by dissipated laser energy, the peak temperature of the control layer occurs after the peak temperature for the storage layer. When the higher power write beam is used, the domain cools through its Curie temperature before the corresponding region cools through its compensation temperature so that an upward magnetic orientation is established in the domain. When the lower power write beam is used, the domain cools through its Curie temperature after the corresponding region cools through its compensation temperature so that a downward magnetic orientation is established in the domain.