会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 24. 发明申请
    • METHOD OF SUPPRESSING CONVECTION IN A FLUID IN A CYLINDRICAL VESSEL
    • 抑制圆柱形流体中流体对流的方法
    • US20010054375A1
    • 2001-12-27
    • US08893223
    • 1997-07-15
    • SHINSUKE FUJIWARA
    • C30B001/00
    • C30B30/08C30B25/00C30B25/08C30B25/14C30B29/48
    • An object of the present invention is to provide a method of suppressing convection of a fluid in a cylindrical vessel by means of realizing an environment under micro gravity which can be maintained for such a long time that growth of a large-sized crystal be economically effected. The feature of the present invention consists in a method of suppressing occurrence of natural convection of a fluid in a cylindrical vessel, when a density gradient due to difference in temperature, concentration or partial pressure is added to the gas or liquid filled in the cylindrical vessel along the central axis of the vessel, characterized by maintaining horizontal the vessel and rotating it around the central axis.
    • 本发明的目的是提供一种通过实现微重力下的环境来抑制圆柱形容器中的流体的对流的方法,该方法可以保持这样长的时间,从而经济地实现大尺寸晶体的生长 。 本发明的特征在于,当将由于温度,浓度或分压差导致的密度梯度加到装在圆柱形容器中的气体或液体时,抑制圆柱形容器中的流体自然对流的发生的方法 沿着容器的中心轴线,其特征在于保持容器的水平并围绕中心轴线旋转。
    • 25. 发明授权
    • Method of manufacturing a single crystal and apparatus for manufacturing
single crystal
    • 制造单晶的方法和用于制造单晶的装置
    • US6153007A
    • 2000-11-28
    • US331502
    • 1999-06-22
    • Josuke Nakata
    • Josuke Nakata
    • C30B11/00C30B30/08C30B25/02
    • C30B30/08C30B11/00C30B29/06C30B29/08C30B29/40C30B29/60Y10S117/903Y10T117/1016Y10T117/1024
    • The present invention relates to a manufacturing method for a monocrystal and to a monocrystal manufacturing device. The present invention relates to a technology for manufacturing a granular monocrystal, wherein: melt of melted raw material is made into a supercooled spherical melt; while the melt is levitated under microgravitational conditions, the free energy of a portion of the surface of the melt is reduced, and a monocrystal is grown. A monocrystal manufacturing device 31 comprises: a gold image furnace 35, a chamber 33, a raw material supply/retention mechanism 38; a drop tube 36 and a drop tube 37; a rotating plate 39; a recovery vat 40; and the like. Raw material 32a of semiconductor material is heated and melted and allowed to free fall in a vacuum inside drop tubes 36, 37. During the drop, rotating plate 39 comes into contact with a portion of the surface of supercooled spherical melt 32b, and a crystal nucleus is generated. From this crystal, a monocrystal is grown, and a spherical monocrystal 32c is formed, and this is recovered in recovery vat 40.
    • PCT No.PCT / JP97 / 03844 Sec。 371日期:1999年6月22日 102(e)1999年6月22日PCT 1997年10月23日PCT公布。 出版物WO99 /​​ 22048 日期:1999年6月5日本发明涉及单晶和单晶制造装置的制造方法。 本发明涉及一种粒状单晶的制造技术,其中熔融的原料的熔体被制成过冷的球形熔体; 而在微重力条件下使熔体悬浮,则熔体表面部分的自由能降低,生长单晶。 单晶体制造装置31包括:金成像炉35,室33,原料供给/保持机构38; 下降管36和下降管37; 旋转板39; 回收桶40; 等等。 半导体材料的原料32a被加热熔化,并允许在滴管36,37内的真空中自由落下。在下降期间,旋转板39与过冷球形熔融体32b的表面的一部分接触, 产生核。 从该晶体生长单晶,形成球状单晶32c,并在回收槽40中回收。
    • 26. 发明授权
    • Protein crystal growth apparatus for microgravitiy
    • 蛋白质晶体生长装置
    • US5643540A
    • 1997-07-01
    • US394863
    • 1995-02-27
    • Daniel C. CarterTimothy E. Dowling
    • Daniel C. CarterTimothy E. Dowling
    • C30B7/00C30B30/08B01D9/00
    • C30B30/08C30B29/58C30B7/00Y10T117/10Y10T117/1008
    • Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface, the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.
    • 在微重力环境下生长蛋白质晶体的装置包括在罐内一个又一个地堆叠的多个蛋白质生长组件。 蛋白质生长组件中的每一个包括具有在上表面下方凹进的多个间隔开的生长室的托盘,每个生长室具有直立的基座和围绕基座的环形储存器,用于接收芯和沉淀剂。 一个井凹入每个基座的顶部下方以限定蛋白质晶体生长容器。 柔性膜定位在每个托盘的上表面上,并且密封板位于每个膜上方,每个密封板具有多个对应于底座的缓冲器,用于迫使膜选择性地抵靠相应的上端 当密封板被迫下时,基座用于密封容器和容器。
    • 27. 发明授权
    • Apparatus and capsule for carrying out processes of directed
crystallization, especially in cosmic space conditions
    • 用于执行定向结晶过程的装置和胶囊,特别是在宇宙空间条件下
    • US5429341A
    • 1995-07-04
    • US38974
    • 1993-03-29
    • Pal BarczyGabor BuzaGyorgy CzelJozsef FancsaliPeter MakkCsaba RaffayAndras RooszBela Tolvaj
    • Pal BarczyGabor BuzaGyorgy CzelJozsef FancsaliPeter MakkCsaba RaffayAndras RooszBela Tolvaj
    • C30B30/08F27B17/00F27D5/00C22B4/08
    • C30B30/08F27B17/00F27D5/00Y10S117/901
    • The present invention refers to an apparatus and a capsule for carrying out processes of directed crystallization, especially in cosmic space conditions. The apparatus comprises a first compartment forming a multizone furnace having an inner surface divided into heating zones for heating up material pieces to be processed, and a second compartment for receiving capsule holders bearing capsules for receiving the material pieces, the first and second compartments being connected with one another through a cooled neck part and determining together a common closed space, the second compartment includes an upper and a lower annular rims prepared with cutouts for capsule holders, the capsule holders and the rims forming together a magazine of capsules, and revolving manipulating means. The capsule comprises a metallic mantle, a tube type crucible made with a ceramic wall arranged within the metallic mantle, the metallic mantle and crucible being opened from one side, at least one thermoelement and having a respective wire built-in into the ceramic wall and a head part with elements fitting to outer guiding means, the head part including contacting means for forwarding electric signals via the wire to an outer control unit.
    • 本发明涉及一种用于执行定向结晶过程的装置和胶囊,特别是在宇宙空间条件下。 该装置包括形成多区域炉的第一室,其具有分成用于加热要处理的材料块的加热区的内表面,以及用于接收承载用于接收材料块的胶囊的胶囊保持器的第二隔室,第一和第二隔室连接 彼此通过冷却的颈部并且一起确定共同的封闭空间,第二隔室包括上部和下部环形边缘,所述上部和下部环形边缘由胶囊保持器的切口,胶囊保持器和边缘组成胶囊盒,并且旋转操纵 手段。 所述胶囊包括金属外壳,由陶瓷壁制成的管状坩埚,所述陶瓷壁布置在所述金属外壳内,所述金属外壳和坩埚从一侧开口,至少一个热电偶并具有内置于所述陶瓷壁中的相应电线, 具有与外引导装置配合的元件的头部,头部包括用于经由线将电信号转发到外控制单元的接触装置。
    • 30. 发明授权
    • Ampoule rupture detection system
    • 安瓿破裂检测系统
    • US5363694A
    • 1994-11-15
    • US153762
    • 1993-11-17
    • Norman A. Grabowski
    • Norman A. Grabowski
    • C30B11/00C30B23/00C30B25/00C30B30/08G01M3/20
    • C30B30/08C30B11/00C30B23/002C30B25/00
    • A detection or safety system is disclosed for preventing leakage of harmful gases when fragile ampoules break during heating of components in crystal growth experiments. In the preferred embodiment, the system includes an inner silica ampoule to house the components and reaction product; an outer silica ampoule that encases the inner ampoule, leaving a gap between them; an inert gas (preferably neon) that is normally trapped in the gap; and a metal canister that houses or contains the ampoules. If the pressure becomes too great within the inner ampoule, during heating by the crystal growth furnace, both ampoules may break. If that occurs, the neon is released, where upon its presence is sensed by a thermal conductivity detector ("TCD"). The TCD then sends off a signal to a controller which shuts off the furnace power. The resulting decrease in temperature releases the pressure and prevents the canister from being breached. This keeps potentially harmful gases contained within the canister, instead of escaping from the system.
    • 公开了一种检测或安全系统,用于在晶体生长实验中部件加热过程中脆性安瓿破裂时防止有害气体泄漏。 在优选实施方案中,该系统包括用于容纳组分和反应产物的内部二氧化硅安瓿; 外置二氧化硅安瓿,内装安瓿瓶,留下间隙; 通常被捕获在间隙中的惰性气体(优选氖); 以及容纳或含有安瓿的金属罐。 如果在内安瓿内的压力变得太大,则在通过晶体生长炉加热时,两个安瓿都可能破裂。 如果发生这种情况,则释放出霓虹灯,其中由热导检测器(“TCD”)检测到氖。 然后,TCD将信号发送到关闭炉功率的控制器。 所导致的温度降低释放压力并防止罐被破坏。 这样可以防止罐内的潜在有害气体,而不是从系统中逸出。