会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • System and method for medical predictive models using likelihood gamble pricing
    • 使用可能性赌博定价的医学预测模型的系统和方法
    • US08010476B2
    • 2011-08-30
    • US12128947
    • 2008-05-29
    • Glenn FungPhan Hong GiangHarald SteckR. Bharat Rao
    • Glenn FungPhan Hong GiangHarald SteckR. Bharat Rao
    • G06F17/00G06N5/02
    • G06K9/6278G06F19/00G16H50/20
    • A method for predicting survival rates of medical patients includes providing a set D of survival data for a plurality of medical patients, providing a regression model having an associated parameter vector β, providing an example x0 of a medical patient whose survival probability is to be classified, calculating a parameter vector {circumflex over (β)} that maximizes a log-likelihood function of β over the set of survival data, l(β|D), wherein the log likelihood l(β|D) is a strictly concave function of β and is a function of the scalar xβ, calculating a weight w0 for example x0, calculating an updated parameter vector β* that maximizes a function l(β|D∪{(y0,x0,w0)}), wherein data points (y0,x0,w0) augment set D, calculating a fair log likelihood ratio λf from {circumflex over (β)} and β* using λf=λ(β*|x0)+sign(λ({circumflex over (β)}|x0)){l({circumflex over (β)}|D)−l(β*|D)}, and mapping the fair log likelihood ratio λf to a fair price y0f, wherein said fair price is a probability that class label y0 for example x0 has a value of 1.
    • 一种用于预测医疗患者的存活率的方法包括为多个医疗患者提供生存数据的集合D,提供具有相关参数向量的回归模型,提供其生存概率为的医疗患者的示例x0 分类,计算最大化对数似然函数&bgr的参数向量{circumflex over(&bgr;)} 超过一组生存数据,l(&bgr; | D),其中对数似然l(&bgr | | D)是严格的凹函数&bgr; 并且是标量x&bgr的函数;计算例如x0的权重w0,计算更新的参数向量&bgr; *使函数l(&bgr; |D∪{(y0,x0,w0)})最大化,其中数据 点(y0,x0,w0)增加集合D,使用λf=λ(&bgr; * | x0)+符号(λ({circumflex))计算{circumflex over(&bgr;)}和&bgr; *的公平对数似然比λf over(&bgr;)} | x0)){l({circumflex over(&bgr;)} | D)-l(&bgr; * | D)},并将公平对数似然比λf映射到公平价格y0f,其中 公平价格是类标签y0(例如x0)的值为1的概率。
    • 24. 发明申请
    • Input feature and kernel selection for support vector machine classification
    • 输入特征和内核选择,用于支持向量机分类
    • US20050049985A1
    • 2005-03-03
    • US10650121
    • 2003-08-28
    • Olvi MangasarianGlenn Fung
    • Olvi MangasarianGlenn Fung
    • G06F17/00G06K9/62G06N5/00
    • G06K9/6228G06K9/6269
    • A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.
    • 用于支持向量机(SVM)分类的特征选择技术使用快速牛顿法来抑制线性SVM分类器的线性规划公式的输入空间特征,或者抑制非线性SVM分类器的线性规划公式的核函数。 这些技术可以用线性方程求解器来实现,而不需要专门的线性规划包。 特征选择技术可以适用于线性或非线性SVM分类器。 该技术可以包括定义SVM分类器的线性规划公式,求解线性规划公式的双重的外部惩罚函数,以使用牛顿法产生对SVM分类器的解,并且基于SVM分类器选择输入集合 在解决方案。