会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 15. 发明授权
    • Reduced corrosion electronic descaling technology
    • 减少腐蚀电除垢技术
    • US5670041A
    • 1997-09-23
    • US544026
    • 1995-10-17
    • Young I. ChoKarl M. Kyriss
    • Young I. ChoKarl M. Kyriss
    • C02F1/48
    • C02F1/487C02F2201/483C02F2303/22Y10S138/06
    • A method for minimizing localized corrosion of fluid containers that occurs as a consequence of most non-chemical procedures for removing scale deposits is described. It counteracts the unavoidable side-effect of the lowering of the local pH in the vicinity of the bubbles of CO.sub.2 that are generated during an electromagnetically-induced controlled precipitation procedure. The method is a simple and facile procedure for curbing the localized corrosion occurring as a result of most non-chemical procedures for removing scales. The method is desirably performed by an induction coil wrapped around a fluid container such as a pipe encrusted with scale through which hard water is flowing. A pulsing electrical current is successively applied through the coil and halted, preferably for 3 to 10 minutes each. When the current is applied, a transitory induced magnetic field is generated in the solution, and scale encrusted on the fluid container dissolves in the solution. When the pulsing current is stopped, the induced magnetic field in the solution ceases and so the scale stops dissolving, allowing a protective layer of scale to form over potential points of corrosion. Optionally permanent magnets may be used in the process, alone or with an induction coil.
    • 描述了一种用于最小化流体容器的局部腐蚀的方法,这种腐蚀是大多数用于去除垢垢的非化学过程的结果。 它抵消了在电磁感应控制沉淀过程中产生的CO 2气泡附近局部pH降低的不可避免的副作用。 该方法是用于抑制由于大多数非化学程序去除垢而导致的局部腐蚀的简单和容易的程序。 该方法期望地通过缠绕在流体容器上的感应线圈来实现,该流体容器例如是包裹有硬质水流过的水垢的管道。 脉冲电流依次通过线圈施加并停止,优选为3至10分钟。 当施加电流时,在溶液中产生瞬时感应磁场,并且结垢在流体容器上的刻度溶解在溶液中。 当脉冲电流停止时,溶液中的感应磁场停止,因此刻度停止溶解,允许保护层形成超过潜在的腐蚀点。 可选地,永磁体可以在该过程中单独使用或与感应线圈一起使用。
    • 17. 发明授权
    • Heat pump water heater
    • 热泵热水器
    • US09151486B2
    • 2015-10-06
    • US13639135
    • 2011-04-11
    • Young I. Cho
    • Young I. Cho
    • F22B1/28F24H4/04F24H9/20
    • F24D17/0036F22B1/28F22B1/281F24D17/02F24D2200/123F24H4/04F24H9/2021F25B27/00F25D21/08Y02B10/20Y02B10/70
    • An energy efficient heat pump system capable of operating in extreme low and high temperature environments. The heat pump system includes an evaporator, a heater operatively associated with the evaporator, compressor and condenser. In an exemplary embodiment, the heat pump system may further include a plasma pulse-spark system to facilitate removal of scale deposits. The heater heats an environmental medium prior to the environmental medium exchanging energy with a refrigerant located in an evaporator coil of the evaporator in order to maintain a predetermined minimum temperature differential between the environmental medium when it contacts the evaporator coil and the refrigerant when located in the evaporator coil. The system allows efficient operation at low temperatures.
    • 能够在极低温和高温环境下工作的节能型热泵系统。 热泵系统包括蒸发器,与蒸发器可操作地连接的加热器,压缩机和冷凝器。 在示例性实施例中,热泵系统还可以包括等离子体脉冲 - 火花系统,以便于去除垢垢。 在环境介质与位于蒸发器的蒸发器盘管内的制冷剂交换能量之前,加热器将环境介质加热,以便当环境介质接触蒸发器盘管和制冷剂位于 蒸发器盘管。 该系统允许在低温下有效的操作。
    • 18. 发明申请
    • HEAT PUMP WATER HEATER
    • 热泵水加热器
    • US20130025300A1
    • 2013-01-31
    • US13639135
    • 2011-04-11
    • Young I. Cho
    • Young I. Cho
    • F25B29/00F25D21/04F25B30/02
    • F24D17/0036F22B1/28F22B1/281F24D17/02F24D2200/123F24H4/04F24H9/2021F25B27/00F25D21/08Y02B10/20Y02B10/70
    • An energy efficient heat pump system capable of operating in extreme low and high temperature environments. The heat pump system includes an evaporator, a heater operatively associated with the evaporator, compressor and condenser. In an exemplary embodiment, the heat pump system may further include a plasma pulse-spark system to facilitate removal of scale deposits. The heater heats an environmental medium prior to the environmental medium exchanging energy with a refrigerant located in an evaporator coil of the evaporator in order to maintain a predetermined minimum temperature differential between the environmental medium when it contacts the evaporator coil and the refrigerant when located in the evaporator coil. The system allows efficient operation at low temperatures.
    • 能够在极低温和高温环境下工作的节能型热泵系统。 热泵系统包括蒸发器,与蒸发器可操作地连接的加热器,压缩机和冷凝器。 在示例性实施例中,热泵系统还可以包括等离子体脉冲 - 火花系统,以便于去除垢垢。 在环境介质与位于蒸发器的蒸发器盘管内的制冷剂交换能量之前,加热器将环境介质加热,以便当环境介质接触蒸发器盘管和制冷剂位于 蒸发器盘管。 该系统允许在低温下有效的操作。
    • 19. 发明授权
    • Water treatment process
    • 水处理工艺
    • US07244360B2
    • 2007-07-17
    • US10493094
    • 2002-10-23
    • Young I. Cho
    • Young I. Cho
    • C02F1/48
    • C02F1/487C02F1/001C02F1/38C02F1/4602C02F1/48C02F1/56C02F5/10C02F5/12C02F2001/46138C02F2103/023C02F2201/4613C02F2303/04C02F2303/20C02F2303/22
    • The present invention provides a physical water treatment (PWT) method and apparatus to treat liquid coolants. Electrodes (22, 24) are provided in a coolant stream (21), and an alternating voltage is applied across the electrodes (22, 24) to produce an electric field through the coolant. The alternating voltage creates an oscillating electric field in the coolant that promotes the collision of dissolved mineral ions. The ions collide to form seed particles that precipitate out of solution. Bulk precipitation of seed particles decreases the availability of ions in solution which can crystallize on heat transfer surfaces. The seed particles adhere to additional ions that separate out of solution and form larger particles that may be removed from the coolant stream (21) using a variety of treatment measures. In addition to precipitating mineral ions, the electric field may be applied to destroy bacteria, algae and microorganisms that accumulate in the coolant stream (21).
    • 本发明提供一种处理液体冷却剂的物理水处理(PWT)方法和设备。 电极(22,24)设置在冷却剂流(21)中,并且跨越电极(22,24)施加交流电压以通过冷却剂产生电场。 交流电压在冷却剂中产生振荡电场,促进溶解的矿物离子的碰撞。 离子碰撞形成沉淀出溶液的种子颗粒。 种子颗粒的大量沉淀会降低溶液中可能会在传热表面上结晶的溶液的可用性。 种子颗粒粘附到分离出溶液的另外的离子,并形成可以使用各种处理措施从冷却剂流(21)中除去的更大的颗粒。 除了沉淀矿物离子之外,还可以施加电场以破坏积聚在冷却剂流(21)中的细菌,藻类和微生物。
    • 20. 发明授权
    • Method of isolating surface tension and yield stress in viscosity measurements
    • 在粘度测量中分离表面张力和屈服应力的方法
    • US06450974B1
    • 2002-09-17
    • US09708137
    • 2000-11-08
    • Sangho KimSehyun ShinYoung I. Cho
    • Sangho KimSehyun ShinYoung I. Cho
    • A61B500
    • G01N11/06A61B5/02035G01N11/04G01N2013/0283
    • A method for isolating the effects of surface tension and/or yield stress of a fluid that is flowing in a U-shaped tube wherein one or both legs of the U-shaped tube is monitored over time for the changing height of the respective fluid columns therein. A portion of the U-shaped tube comprises a flow restrictor, e.g., a capillary tube, of known dimensions. Monitoring one or both of the moving fluid columns over time permits the determination of the viscosity of the fluid flowing therein over a range of shear rates from the difference in fluid column heights. However, it is necessary to isolate the effects of surface tension and/or yield stress to obtain an accurate viscosity determination. The method provides one manner in which the surface tension effect can be subtracted from the difference in fluid column heights and then any yield stress effect can then be determined. Alternatively, the method also provides a process by which both the surface tension effect and yield stress effect can be determined simultaneously.
    • 用于分离在U形管中流动的流体的表面张力和/或屈服应力的影响的方法,其中U形管的一个或两个腿随着时间的推移监测各个流体柱的变化高度 其中。 U形管的一部分包括具有已知尺寸的限流器,例如毛细管。 随着时间的推移监测一个或两个运动流体柱可以在流体柱高度的差异的剪切速率范围内确定流过其中的流体的粘度。 然而,有必要分离表面张力和/或屈服应力的影响,以获得准确的粘度测定。 该方法提供了一种方式,其中可以从流体柱高度的差中减去表面张力效应,然后可以确定任何屈服应力效应。 或者,该方法还提供了同时确定表面张力效应和屈服应力效应两者的过程。