会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Semiconductor memory device and method of forming the same
    • 半导体存储器件及其形成方法
    • US20070295999A1
    • 2007-12-27
    • US11819174
    • 2007-06-26
    • Hiroki Murakami
    • Hiroki Murakami
    • H01L27/10G06F17/50
    • H01L27/105H01L23/5222H01L27/1052H01L2924/0002H01L2924/00
    • Example embodiments provide a semiconductor memory device and method of forming a semiconductor memory device that may equalize load due to a coupling capacitance between a line and a component signal when the line intersects the component signal in a memory cell array. A line may intersect a memory cell region between a transmitting point (A) and a receiving point (B) of a signal. A line between the transmitting point (A) and the receiving point (B) may be bent at two portions of each of bit lines. Because areas where the line and the bit lines extend parallel to each other may be equal in dimension at each bit line, coupling capacitances between the line and the bit lines may be equalized. The read characteristic may not be affected by the coupling capacitances.
    • 示例性实施例提供一种形成半导体存储器件的半导体存储器件和方法,该半导体存储器件可以在线与元件信号在存储单元阵列中相交时由于线与元件信号之间的耦合电容而使负载均衡。 线可以与信号的发送点(A)和接收点(B)之间的存储单元区域相交。 发送点(A)和接收点(B)之间的线可以在每个位线的两个部分处弯曲。 因为线和位线彼此平行延伸的区域在每个位线处的尺寸可以相等,所以线和位线之间的耦合电容可以相等。 读取特性可能不受耦合电容的影响。
    • 14. 发明申请
    • Method for attaching a fluid container to a fluid ejector in a fluid ejection device
    • 将流体容器附接到流体喷射装置中的流体喷射器的方法
    • US20050168508A1
    • 2005-08-04
    • US10766008
    • 2004-01-29
    • Brian HiltonEric MerzTakatoshi TsuchiyaHiroki Murakami
    • Brian HiltonEric MerzTakatoshi TsuchiyaHiroki Murakami
    • B41J2/16B41J2/175B41J29/38
    • B41J2/17513B41J2/17509Y10T156/1043
    • A method for joining fluid containers and fluid ejectors in a fluid ejecting device are provided. The fluid container includes one or more heat stakes and a substrate includes one or more apertures for receiving the heat stakes and one or more three-dimensional features in the vicinity of the one or more apertures. The fluid ejector and optionally an elastic member are interposed between the fluid container and the substrate. Thermal energy is applied to the one or more heat stakes so that the one or more heat stakes soften to occupy the apertures and three-dimensional features of the substrate and pressure is applied to maintain contact between the fluid container, elastic member, fluid ejector and substrate. The present invention is also directed to substrate including one or more apertures for receiving heat stakes and one or more three-dimensional features in the vicinity of the one or more apertures.
    • 提供了一种在流体喷射装置中连接流体容器和流体喷射器的方法。 流体容器包括一个或多个热桩,并且衬底包括用于接收热桩的一个或多个孔和一个或多个孔附近的一个或多个三维特征。 流体喷射器和可选地弹性构件插入在流体容器和基底之间。 将热能施加到一个或多个热桩上,使得一个或多个热桩软化以占据孔,并且施加衬底的三维特征并施加压力以保持流体容器,弹性构件,流体喷射器和 基质。 本发明还涉及包括用于接收热桩的一个或多个孔和一个或多个孔附近的一个或多个三维特征的衬底。
    • 15. 发明授权
    • Method of producing high-quality silicon single crystals
    • 生产高品质硅单晶的方法
    • US06458204B1
    • 2002-10-01
    • US09717135
    • 2000-11-22
    • Masahiko OkuiHiroki MurakamiKazuyuki EgashiraMakoto ItoHiroshi HayakawaKelly GarretYoshinori Shirakawa
    • Masahiko OkuiHiroki MurakamiKazuyuki EgashiraMakoto ItoHiroshi HayakawaKelly GarretYoshinori Shirakawa
    • C30B1520
    • C30B29/06C30B15/203C30B15/305
    • A method of producing high-quality and large-diameter single crystals by the Czochralski method is disclosed which can provide wafers with a minimized number of such grown-in defects as dislocation clusters and laser scattering tomography defects. Specifically, it is a method of producing silicon single crystals which comprises carrying out the crystal pulling while maintaining the solid-melt interface during pulling in the shape of an upward convex with the central portion of the interface being higher by at least 5 mm than the peripheral region thereof and while applying a magnetic field, and optionally in addition to the above, while maintaining the temperature gradient in the direction of axis of pulling in the peripheral region at a level lower than that in the central portion in the range of from the melting point to 1,200° C. In this case, it is desirable that the portion of the single crystal surface lying at least 50 mm above the melt surface be shielded from direct radiant heat from the heater and/or crucible wall, that a horizontal magnetic field of 0.08 to 0.3 T be applied in parallel with the melt surface or a cusped magnetic field showing an intensity of 0.02 to 0.07 T at a crucible wall site on the melt surface be applied and that the crucible be rotated at a speed of not more than 5 min−1 and the single crystal at a speed of not less than 13 min−1.
    • 公开了通过Czochralski方法生产高质量和大直径单晶的方法,其可以为晶片提供最少数量的诸如位错簇和激光散射层析成像缺陷的这种生长缺陷。 具体地说,它是一种生产硅单晶的方法,其中包括在拉伸成呈向上凸起的形状的同时保持固溶体界面的同时进行晶体拉伸,其中界面的中心部分高​​于 并且在施加磁场的同时,并且可选地除了上述之外,同时保持在周边区域中的拉动轴线方向上的温度梯度比在中心部分的温度梯度低 熔点为1200℃。在这种情况下,希望在熔体表面上方至少50毫米的单晶表面的部分被屏蔽不受来自加热器和/或坩埚壁的直接辐射热,即水平磁 在熔融表面上的坩埚壁部位处,与熔体表面平行施加0.08〜0.3T的场,或者表示强度为0.02〜0.07T的尖细磁场b 并且坩埚以不超过5分钟-1的速度旋转,并且单晶以不小于13分钟-1的速度旋转。