会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 103. 发明授权
    • Semiconductor structure having heterogenous silicide regions having titanium and molybdenum
    • 具有异质硅化物区域的具有钛和钼的半导体结构
    • US06512296B1
    • 2003-01-28
    • US09636325
    • 2000-08-10
    • Robert J. Gauthier, Jr.Randy W. MannSteven H. Voldman
    • Robert J. Gauthier, Jr.Randy W. MannSteven H. Voldman
    • H01L2348
    • H01L29/4933H01L21/28052H01L21/28518H01L21/28568H01L21/823418H01L21/823443H01L29/456
    • A process for forming heterogeneous silicide structures on a semiconductor substrate (10) includes implanting molybdenum ions into selective areas of the semiconductor substrate (10) to form molybdenum regions (73, 74, 75, 76). Titanium is then deposited over the semiconductor substrate (10). The semiconductor substrate (10) is annealed at a temperature between approximately 600° C. and approximately 700° C. During the annealing process, the titanium deposited in areas outside the molybdenum regions (73, 74, 75, 76) interacts with silicon on the substrate to form titanium silicide in a high resistivity C49 crystal phase. The titanium deposited in areas within the molybdenum regions (73, 74, 75, 76) interacts with silicon to form titanium silicide in a low resistivity C54 crystal phase because the presence of molybdenum ions in silicon lowers the energy barrier for crystal phase transformation between the C49 phase and the C54 phase.
    • 在半导体衬底(10)上形成异质硅化物结构的方法包括将钼离子注入到半导体衬底(10)的选择区域中以形成钼区(73,74,75,76)。 然后将钛沉积在半导体衬底(10)上。 半导体衬底(10)在大约600℃和大约700℃之间的温度下退火。在退火过程中,沉积在钼区域(73,74,75,76)之外的区域中的钛与硅 该基板在高电阻率C49晶相中形成硅化钛。 在钼区域(73,74,75,76)中的区域中沉积的钛与硅相互作用以在低电阻率C54晶体相中形成硅化钛,因为硅中的钼离子的存在降低了能量势垒以进行晶体相变 C49相和C54相。
    • 106. 发明授权
    • Method of forming a semiconductor diode with depleted polysilicon gate structure
    • 形成具有耗尽的多晶硅栅结构的半导体二极管的方法
    • US06232163B1
    • 2001-05-15
    • US09362549
    • 1999-07-28
    • Steven H. VoldmanRobert J. Gauthier, Jr.Jeffrey S. Brown
    • Steven H. VoldmanRobert J. Gauthier, Jr.Jeffrey S. Brown
    • H01L218238
    • H01L27/0811H01L29/7391H01L2924/0002H01L2924/00
    • A high voltage tolerant diode structure for mixed-voltage, and mixed signal and analog/digital applications. The preferred silicon diode includes a polysilicon gate structure on at least one dielectric film layer on a semiconductor (silicon) layer or body. A well or an implanted area is formed in a bulk semiconductor substrate or in a surface silicon layer on an SOI wafer. Voltage applied to the polysilicon gate film, electrically depletes it, reducing voltage stress across the dielectric film. An intrinsic polysilicon film may be counter-doped, implanted with a low doped implantation, implanted with a low doped source/drain implant, or with a low doped MOSFET LDD or extension implant. Alternatively, a block mask may be formed over the gate structure when defining the depleted-polysilicon gate silicon diode to form low series resistance diode implants, preventing over-doping the film. Optionally, a hybrid photoresist method may be used to form higher doped edge implants in the silicon to reduce diode series resistance without a block mask.
    • 用于混合电压,混合信号和模拟/数字应用的高耐压二极管结构。 优选的硅二极管包括在半导体(硅)层或主体上的至少一个电介质膜层上的多晶硅栅极结构。 阱体或植入区域形成在SOI半导体衬底或SOI晶片的表面硅层中。 施加到多晶硅栅极膜的电压,电耗电,降低电介质膜两端的电压。 本征多晶硅膜可以是反掺杂的,注入低掺杂注入,注入低掺杂源/漏注入,或者与低掺杂的MOSFET LDD或延伸注入。 或者,当限定耗尽多晶硅栅极硅二极管以形成低串联电阻二极管植入物时,可以在栅极结构上形成块掩模,防止膜过度掺杂。 可选地,可以使用混合光致抗蚀剂方法在硅中形成更高掺杂的边缘注入,以减少二极管串联电阻而不使用块掩模。
    • 107. 发明授权
    • Depleted polysilicon circuit element and method for producing the same
    • 耗尽多晶硅电路元件及其制造方法
    • US6034388A
    • 2000-03-07
    • US79846
    • 1998-05-15
    • Jeffrey S. BrownRobert J. Gauthier, Jr.Steven H. Voldman
    • Jeffrey S. BrownRobert J. Gauthier, Jr.Steven H. Voldman
    • H01L21/334H01L21/762H01L21/8238H01L27/06H01L27/12H01L29/94H01L29/76
    • H01L29/66181H01L21/76237H01L21/76264H01L21/823842H01L21/82385H01L27/0629H01L27/1203H01L29/94H01L21/76283Y10S257/907
    • A circuit element comprising a semiconductor substrate. A well region of a first conductivity type is formed in a surface of the substrate. A dielectric film is formed on the substrate. A gate conductor of the first conductivity type is formed on the dielectric film over the well region of the substrate. The gate conductor is formed of a polycrystalline silicon film. The gate conductor has an impurity concentration substantially lower than a standard impurity concentration for the gate conductor of an MOS device. A polycrystalline silicon edge spacer is formed on each side of the gate conductor. A first pair of first conductivity type impurity diffusion regions are formed adjacent to the polycrystalline silicon edge spacers. The polycrystalline silicon film and edge spacers lie on a portion of the substrate between the first pair of first conductivity type impurity diffusion regions. The first pair of first conductivity type impurity diffusion regions have an impurity concentration substantially lower than the standard impurity concentration for the gate conductor of an MOS device. The gate conductor and the first pair of first conductivity type impurity diffusion regions may be formed by a single implantation step. Applications include ESD protection, analog applications, peripheral input/output circuitry, decoupling capacitors, and resistor ballasting.
    • 一种包括半导体衬底的电路元件。 第一导电类型的阱区形成在衬底的表面中。 在基板上形成电介质膜。 在衬底的阱区上的电介质膜上形成第一导电类型的栅极导体。 栅极导体由多晶硅膜形成。 栅极导体的杂质浓度基本上低于MOS器件的栅极导体的标准杂质浓度。 在栅极导体的每一侧上形成多晶硅边缘隔离物。 第一对第一导电型杂质扩散区形成在与多晶硅边缘隔离物相邻的位置。 多晶硅膜和边缘隔离物位于第一对第一导电型杂质扩散区之间的衬底的一部分上。 第一对第一导电型杂质扩散区的杂质浓度基本上低于MOS器件的栅极导体的标准杂质浓度。 可以通过单个注入步骤形成栅极导体和第一对第一导电型杂质扩散区。 应用包括ESD保护,模拟应用,外围输入/输出电路,去耦电容和电阻镇流器。