会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 93. 发明申请
    • SUPER CMOS DEVICES ON A MICROELECTRONICS SYSTEM
    • US20170125404A1
    • 2017-05-04
    • US15358049
    • 2016-11-21
    • SCHOTTKY LSI, INC.
    • AUGUSTINE WEI-CHUN CHANG
    • H01L27/06H01L27/112H01L31/07H01L21/8238H01L31/0376H01L27/11526H01L29/872
    • H01L27/0629H01L21/8238H01L25/065H01L27/0207H01L27/0727H01L27/105H01L27/10897H01L27/112H01L27/11253H01L27/11286H01L27/11293H01L27/11526H01L27/11546H01L27/11807H01L28/20H01L29/66143H01L29/872H01L31/032H01L31/0376H01L31/03762H01L31/07H01L31/072H01L31/074H01L2924/0002H03K19/17728Y02E10/50H01L2924/00
    • This application is directed to a low cost IC solution that provides Super CMOS microelectronics macros. Hereinafter, SCMOS refers to Super CMOS and Schottky CMOS. SCMOS device solutions includes a niche circuit element, such as complementary low threshold Schottky barrier diode pairs (SBD) made by selected metal barrier contacts (Co, Ti, Ni or other metal atoms or compounds) to P- and N-Si beds of the CMOS transistors. A DTL like new circuit topology and designed wide contents of broad product libraries, which used the integrated SBD and transistors (BJT, CMOS, and Flash versions) as basic components. The macros are composed of diodes that are selectively attached to the diffusion bed of the transistors, configuring them to form (i) generic logic gates, (ii) functional blocks of microprocessors and microcontrollers such as but not limited to data paths, multipliers, muliplier-accumaltors, (ii) memory cells and control circuits of various types (SRAM's with single or multiple read/write port(s), binary and ternary CAM's), (iii) multiplexers, crossbar switches, switch matrices in network processors, graphics processors and other processors to implement a variety of communication protocols and algorithms of data processing engines for (iv) Analytics, (v) block-chain and encryption-based security engines (vi) Artificial Neural Networks with specific circuits to emulate or to implement a self-learning data processor similar to or derived from the neurons and synapses of human or animal brains, (vii) analog circuits and functional blocks from simple to the complicated including but not limited to power conversion, control and management either based on charge pumps or inductors, sensor signal amplifiers and conditioners, interface drivers, wireline data transceivers, oscillators and clock synthesizers with phase and/or delay locked loops, temperature monitors and controllers; all the above are built from discrete components to all grades of VLSI chips. Solar photovoltaic electricity conversion, bio-lab-on-a-chip, hyperspectral imaging (capture/sensing and processing), wireless communication with various transceiver and/or transponder circuits for ranges of frequency that extend beyond a few 100 MHz, up to multi-THz, ambient energy harvesting either mechanical vibrations or antenna-based electromagnetic are newly extended or nacent fields of the SCMOS IC applications.
    • 96. 发明授权
    • Electronic gate enhancement of Schottky junction solar cells
    • 肖特基结太阳能电池的电子门极增强
    • US09331217B2
    • 2016-05-03
    • US13580205
    • 2011-04-27
    • Andrew Gabriel RinzlerPooja WadhwaJing GuoGyungseon Seol
    • Andrew Gabriel RinzlerPooja WadhwaJing GuoGyungseon Seol
    • H01L31/0224H01L31/07
    • H01L31/022433H01L31/07Y02E10/50
    • Various systems and methods are provided for Schottky junction solar cells. In one embodiment, a solar cell includes a mesh layer formed on a semiconductor layer and an ionic layer formed on the mesh layer. The ionic layer seeps through the mesh layer and directly contacts the semiconductor layer. In another embodiment, a solar cell includes a first mesh layer formed on a semiconductor layer, a first metallization layer coupled to the first mesh layer, a second high surface area electrically conducting electrode coupled to the first metallization layer by a gate voltage, and an ionic layer in electrical communication with the first mesh layer and the second high surface area electrically conducting electrode. In another embodiment, a solar cell includes a grid layer formed on a semiconductor layer and an ionic layer in electrical communication with the grid layer and the semiconductor layer.
    • 为肖特基结太阳能电池提供了各种系统和方法。 在一个实施例中,太阳能电池包括形成在半导体层上的网格层和形成在网格层上的离子层。 离子层渗透网格层并直接接触半导体层。 在另一个实施例中,太阳能电池包括形成在半导体层上的第一网格层,耦合到第一网格层的第一金属化层,通过栅极电压耦合到第一金属化层的第二高表面积导电电极,以及 离子层与第一网格层和第二高表面积导电电极电连通。 在另一实施例中,太阳能电池包括形成在半导体层上的栅格层和与栅格层和半导体层电连通的离子层。
    • 97. 发明申请
    • Photovoltaic Lead-Salt Detectors
    • 光伏铅盐探测器
    • US20160111567A1
    • 2016-04-21
    • US14975285
    • 2015-12-18
    • Board of Regents University of Oklahoma
    • Zhisheng ShiJijun QiuBinbin Weng
    • H01L31/032H01L31/02H01L27/146
    • H01L31/0324H01L27/14649H01L31/07Y02E10/50
    • Disclosed is at least one embodiment of an infrared (IR) photovoltaic (PV) detector, comprising a IV-VI Lead (Pb)-salt layer disposed on a substrate and a charge-separation-junction (CSJ) structure associated with the IV-VI Pb-salt layer, wherein the CSJ structure comprises a plurality of element areas disposed upon or within the IV-VI Pb-salt layer, wherein the plurality of element areas are spaced apart from each other. Each element area may be connected to a first Ohmic contact thereby forming a plurality of interconnected first Ohmic contacts, and a second Ohmic contact may be disposed upon a portion of the IV-VI Pb-salt layer. In another non-limiting embodiment, a PV detector, comprising a heterojunction region that comprises at least one IV-VI Pb-salt material layer coupled to at least one non-Pb-salt layer, wherein the at least one IV-VI Pb-salt layer and the at least one non-Pb-salt layer form a p-n junction or Schottky junction with a type II band gap alignment.
    • 公开了红外(IR)光伏(PV)检测器的至少一个实施例,其包括设置在基板上的IV-VI引线(Pb) - 层,以及与IV-VI相关联的电荷 - 分离 - 连接(CSJ) VI铅 - 盐层,其中CSJ结构包括设置在IV-VI Pb-盐层上或其中的多个元件区域,其中多个元件区域彼此间隔开。 每个元件区域可以连接到第一欧姆接触,从而形成多个互连的第一欧姆接触,并且第二欧姆接触可设置在IV-VI Pb-盐层的一部分上。 在另一个非限制性实施方案中,PV检测器包括异质结区,其包含至少一个与至少一个非Pb盐层相连的IV-VI Pb-盐材料层,其中所述至少一种IV-VI Pb- 盐层和至少一个非Pb盐层形成具有II型带隙对准的pn结或肖特基结。
    • 99. 发明授权
    • Organic semiconductors as window layers for inorganic solar cells
    • 有机半导体作为无机太阳能电池的窗口层
    • US09118026B2
    • 2015-08-25
    • US13232770
    • 2011-09-14
    • Stephen R. ForrestNing Li
    • Stephen R. ForrestNing Li
    • H01L31/07H01L51/42H01L31/18H01L51/00
    • H01L51/4213H01L31/07H01L31/184H01L51/0053Y02E10/544Y02E10/549
    • Disclosed is a device comprising: an anode; a cathode; an inorganic substrate; and at least one organic window layer positioned between: the anode and the inorganic substrate; or the cathode and the inorganic substrate. Also disclosed is a method of enhancing the performance of a photosensitive device having an anode, a cathode, and an inorganic substrate, comprising: positioning at least one organic window layer between the anode and the cathode. In one embodiment the organic window layer may absorb light and generate excitons that migrate to the inorganic where they convert to photocurrent, thereby increasing the efficiency of the device. Also disclosed is a method of enhancing Schottky barrier height of a photosensitive device, the method being substantially similar to the previously defined method.
    • 公开了一种装置,包括:阳极; 阴极 无机基体; 以及至少一个有机窗口层,位于:阳极和无机基底之间; 或阴极和无机基板。 还公开了一种增强具有阳极,阴极和无机衬底的感光装置的性能的方法,包括:在阳极和阴极之间定位至少一个有机窗口层。 在一个实施例中,有机窗口层可以吸收光并产生迁移到无机的激子,在那里它们转化为光电流,从而提高器件的效率。 还公开了一种提高感光器件的肖特基势垒高度的方法,该方法基本上类似于先前定义的方法。