会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明授权
    • Semiconductor processing method of producing an isolated polysilicon
lined cavity and a method of forming a capacitor
    • 用于制造隔离多晶硅衬里腔的半导体加工方法和形成电容器的方法
    • US5391511A
    • 1995-02-21
    • US891
    • 1993-01-05
    • Trung T. DoanCharles H. Dennison
    • Trung T. DoanCharles H. Dennison
    • H01L21/02H01L21/321H01L21/768H01L21/8242H01L27/108H01L21/265
    • H01L27/10817H01L21/02074H01L21/321H01L21/3212H01L21/76885H01L21/76889H01L27/10852H01L28/91Y10S438/906
    • A semiconductor processing includes: a) providing an area atop a semiconductor wafer to which electrical connection to a polysilicon containing component is to be made; b) providing a layer of first material atop the semiconductor wafer, the first material layer having an upper surface; c) providing a contact opening in the layer of first material to the area, the contact opening having a selected open cross dimension; d) providing a layer of polysilicon to a selected thickness atop the layer of first material and within the contact opening to contact the area, the selected thickness being less than one-half the open dimension such that polysilicon less than completely fills the contact opening and thereby defines an outwardly open polysilicon lined cavity; e) with the wafer having the polysilicon lined cavity outwardly open, chemical mechanical polishing with a chemical mechanical polishing slurry the polysilicon atop the first material layer to the upper first material layer surface to define an isolated polysilicon lined cavity; and f) removing chemical mechanical polishing slurry residuals from the outwardly open polysilicon lined cavity.
    • 一种半导体处理方法包括:a)在半导体晶片的顶部提供一个与要制造含多晶硅的元件电连接的区域; b)在半导体晶片的顶部提供第一材料层,第一材料层具有上表面; c)在所述区域的第一材料层中提供接触开口,所述接触开口具有选定的开放交叉尺寸; d)在所述第一材料层顶部和所述接触开口顶部提供选定厚度的多晶硅层以接触所述区域,所述选定厚度小于所述开口尺寸的一半,使得多晶硅不足以完全填充所述接触开口和 从而限定向外开放的多晶硅衬里腔; e)当所述晶片具有向外打开的多晶硅衬里的空腔时,化学机械抛光通过化学机械抛光将多晶硅顶部到第一材料层表面以限定隔离的多晶硅衬里腔; 以及f)从向外开放的多晶硅衬里腔体去除化学机械抛光浆料残留物。
    • 92. 发明授权
    • Thin film transistor (TFT) loads formed in recessed plugs
    • 薄膜晶体管(TFT)负载形成在凹入插头中
    • US5334862A
    • 1994-08-02
    • US104523
    • 1993-08-10
    • Monte ManningCharles H. Dennison
    • Monte ManningCharles H. Dennison
    • H01L21/336H01L29/786H01L29/68H01L21/265
    • H01L29/66765H01L29/78621Y10S257/903
    • The invention is directed to a thin film transistor (TFT) fabricated by using a recessed planarized poly plug as the bottom gate and a recessed planarized poly plug for the TFT drain connecting region. The TFT of the present invention can be used in any integrated circuit that uses such devices and in particular as a pullup device in a static random access memory (SRAM). The invention is directed to a process to fabricate a thin film transistor (TFT) having LDDs and/or high resistive regions (loads) that are self-aligned to a recessed plug that is used as the bottom gate for the TFT. The thin film transistor (TFT) of the present invention fabricated on a supporting substrate, with the TFT comprising: a recessed conductive plug serving as a control gate; a control gate insulating layer; a non-recessed conductive plug serving as a source/drain region interconnect; a film of semiconductive material connecting to and overlapping the plugs, the film having vertical regions extending above the recessed plug and horizontal regions extending over the recessed and non-recessed plugs; wherein, the vertical regions above the recessed plug are conductively doped to form TFT source/drain regions and the horizontal region spanning between the vertical regions above the recessed plug is conductively doped to form a TFT channel region, the horizontal region above the non-recessed plug is conductively doped to form a TFT source/drain interconnect.
    • 本发明涉及通过使用凹陷平面化多晶硅塞作为底栅制造的薄膜晶体管(TFT)和用于TFT漏极连接区域的凹陷平面化多晶硅插头。 本发明的TFT可用于任何使用这种装置的集成电路中,特别是作为静态随机存取存储器(SRAM)中的上拉器件。 本发明涉及一种制造具有LDD和/或高电阻区域(负载)的薄膜晶体管(TFT)的方法,所述LDD和/或高电阻区域(负载)与用作TFT的底栅的凹陷插塞自对准。 本发明的薄膜晶体管(TFT)制造在支撑基板上,TFT包括:用作控制栅的凹形导电插塞; 控制栅绝缘层; 用作源极/漏极区互连的非凹入的导电插塞; 连接到和重叠插塞的半导体材料的薄膜,该薄膜具有在凹形插头上方延伸的垂直区域和在凹入和非凹进的插头上延伸的水平区域; 其中,凹形插塞上方的垂直区域被导电掺杂以形成TFT源极/漏极区域,并且横跨在凹入插塞之上的垂直区域之间的水平区域被导电掺杂以形成TFT沟道区域,水平区域在非凹入 插头导电掺杂以形成TFT源极/漏极互连。
    • 93. 发明授权
    • Reduced mask CMOS process for fabricating stacked capacitor
multi-megabit dynamic random access memories utilizing single etch stop
layer for contacts
    • 用于制造用于接触的单个蚀刻停止层的叠层电容器多兆位动态随机存取存储器的减少掩模CMOS工艺
    • US5292677A
    • 1994-03-08
    • US947523
    • 1992-09-18
    • Charles H. Dennison
    • Charles H. Dennison
    • H01L21/02H01L21/8242H01L27/108H01L21/70
    • H01L27/10852H01L27/10817H01L28/91Y10S438/97
    • An etch stop layer is deposited on a DRAM wafer after formation of the PMOS and NMOS transistors and A.A's. After deposition of oxide 1, a first mask and etch process is used to form the capacitor container and remove the oxide 1 and etch stop at the future poly 1 and cell poly contacts. After deposition of the capacitor, a second mask and etch removes the capacitor layers at the future poly 1 contact. After deposition of oxide 2 and a poly etch stop layer, a third mask and etch process forms the bit line contact region through the cell poly, and the poly 1 and cell poly contact region. The etch is made through the cell poly at the bit line contact and a thin oxide is deposited and etched to form cell poly spacers that don't close off the active area. An oxide etch goes to the etch stop layer at the bit contact region, to the poly 1 at the future poly 1 contact, and to the cell poly at the future cell poly contact. After etch of the etch stop at the future bit line contact, the contacts are formed.
    • 在形成PMOS和NMOS晶体管和A.A之后,在DRAM晶片上沉积刻蚀停止层。 在沉积氧化物1之后,使用第一掩模和蚀刻工艺来形成电容器容器,并且在未来的聚合物1和电池聚合物接触处除去氧化物1和蚀刻停止物。 在电容器沉积之后,第二掩模和蚀刻在未来的poly 1接触处去除电容器层。 在沉积氧化物2和多晶硅蚀刻停止层之后,第三掩模和蚀刻工艺通过电池多晶硅和聚合物1和电池多晶硅接触区域形成位线接触区域。 通过在位线接触处的电池多晶硅进行蚀刻,并且沉积和蚀刻薄氧化物以形成不关闭有源区的电池聚间隔物。 氧化物蚀刻在位接触区域处的蚀刻停止层,到未来聚1接触处的聚合物1,并在将来的电池聚接触处进入电池聚合物。 在未来位线接触处蚀刻停止后,形成触点。
    • 94. 发明授权
    • Fabrication of complementary n-channel and p-channel circuits (ICs)
useful in the manufacture of dynamic random access memories (drams)
    • 制造用于制造动态随机存取存储器(drams)的互补n沟道和p沟道电路(IC)
    • US5272367A
    • 1993-12-21
    • US988376
    • 1992-12-07
    • Charles H. DennisonTyler A. Lowrey
    • Charles H. DennisonTyler A. Lowrey
    • H01L21/334H01L21/762H01L21/8238H01L21/8242H01L27/105H01L27/108H01L29/68H01L29/78H01L29/92
    • H01L27/10844H01L21/76218H01L21/823892H01L27/10805H01L27/10808H01L27/10852H01L27/10873H01L29/66181H01L27/105Y10S257/90
    • A process for fabricating n-channel and p-channel metal-oxide-semiconductor devices in the manufacture of very large scale integrated circuits, such as high density dynamic random access memories (DRAMs). n-channel and p-channel gate layers of selected conductive and non-conductive materials are initially formed on the surface of a semiconductor substrate, and the n-channel gate layers in a memory array and periphery section of the substrate are initially photodefined, leaving the p-channel gate layers in place over an area of the substrate where future p-channel transistors and P+ active area will be formed. A series of ion implantation steps are then carried out to form the n-channel transistors, therefor using no masking steps, since the in-place gate layers on the p-channel peripheral section serves as an ion implantation mask over this section and thus prevents n-type ions from entering the p-type transistor areas of the peripheral section. Then, the completed n-channel transistors memory section is appropriately masked prior to photo-defining the transistor gate electrodes for either p or n-type transistors in the peripheral section of the substrate. Using this process, not only are the total number of necessary ion implantation masking steps held to an absolute minimum, but the p-channel peripheral section circuits such as sense amplifiers, decoders and drivers, logic circuits, and the like are exposed to a minimum of temperature cycling, thereby enhancing device reliability and improving the high frequency performance of the devices thus produced.
    • 用于制造诸如高密度动态随机存取存储器(DRAM)的非常大规模集成电路的制造n沟道和p沟道金属氧化物半导体器件的工艺。 选择的导电和非导电材料的n沟道和p沟道栅极层初始形成在半导体衬底的表面上,并且存储器阵列中的n沟道栅极层和衬底的外围部分最初被定义,留下 p沟道栅极层位于衬底的将要形成未来p沟道晶体管和P +有源区的区域上。 然后执行一系列离子注入步骤以形成n沟道晶体管,因此不使用掩模步骤,因为p沟道外围部分上的就地栅极层用作该部分上的离子注入掩模,因此防止 n型离子进入周边部分的p型晶体管区域。 然后,在对衬底的周边部分中的p型或n型晶体管的晶体管栅电极进行光电定义之前,完成的n沟道晶体管存储部分被适当地屏蔽。 使用该过程,不仅将必要的离子注入掩模步骤的总数保持为绝对最小值,而且将诸如读出放大器,解码器和驱动器,逻辑电路等的p沟道外围部分电路暴露于最小 的温度循环,从而提高器件的可靠性并提高由此产生的器件的高频性能。
    • 99. 发明申请
    • Forming Phase Change Memory Cell With Microtrenches
    • 形成相变存储器细胞与微螺旋
    • US20100197120A1
    • 2010-08-05
    • US12756392
    • 2010-04-08
    • Fabio PellizzerCharles H. Dennison
    • Fabio PellizzerCharles H. Dennison
    • H01L21/20
    • H01L45/06H01L27/2427H01L27/2463H01L45/1233H01L45/126H01L45/144H01L45/1691
    • A semiconductor substrate is covered by a dielectric region. The dielectric region accommodates a memory element and a selection element forming a phase change memory cell. The memory element is formed by a resistive element and by a storage region of a phase change material extending on and in contact with the resistive element at a contact area. The selection element is formed by a switching region of chalcogenic material embedded in the dielectric region and belonging to a stack extending on the resistive element and including also the storage region. A mold region extends on top of the resistive element and delimits a trench having a substantially elongated shape. At least one portion of the storage region extends in the trench and defines a phase change memory portion over the contact area.
    • 半导体衬底被电介质区域覆盖。 电介质区域容纳存储元件和形成相变存储单元的选择元件。 存储元件由电阻元件和在接触区域处延伸并与电阻元件接触的相变材料的存储区域形成。 选择元件由嵌入在电介质区域中的属于在电阻元件上延伸并且还包括存储区域的堆叠的金属的切换区域形成。 模具区域在电阻元件的顶部延伸并限定具有基本细长形状的沟槽。 存储区域的至少一部分在沟槽中延伸并限定了接触区域上的相变存储部分。