会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 94. 发明授权
    • Silicon carbide power devices with self-aligned source and well regions
    • 具有自对准源和阱区的碳化硅功率器件
    • US07381992B2
    • 2008-06-03
    • US11456642
    • 2006-07-11
    • Sei-Hyung Ryu
    • Sei-Hyung Ryu
    • H01L29/15
    • H01L29/7802H01L21/049H01L29/1608H01L29/66068H01L29/7828H01L29/7838Y10S438/931
    • Silicon carbide semiconductor devices and methods of fabricating silicon carbide semiconductor devices are provided by successively etching a mask layer to provide windows for formation of a source region of a first conductivity type, a buried silicon carbide region of a second conductivity type opposite to the first conductivity type and a second conductivity type well region in a first conductivity type silicon carbide layer. The source region and the buried silicon carbide region are formed utilizing a first window of the mask layer. Then, the well region is formed utilizing a second window of the mask layer, the second window being provided by a subsequent etch of the mask layer having the first window.
    • 碳化硅半导体器件和制造碳化硅半导体器件的方法通过连续地蚀刻掩模层来提供用于形成第一导电类型的源极区域的窗口,与第一导电类型相反的第二导电类型的掩埋碳化硅区域 型和第一导电型碳化硅层中的第二导电类型阱区。 利用掩模层的第一窗口形成源区和掩埋碳化硅区。 然后,利用掩模层的第二窗口形成阱区,第二窗口通过随后蚀刻具有第一窗口的掩模层来提供。
    • 95. 发明申请
    • METHODS OF PROCESSING SEMICONDUCTOR WAFERS HAVING SILICON CARBIDE POWER DEVICES THEREON
    • 加工具有硅碳膜电源器件的半导体晶体管的方法
    • US20070066039A1
    • 2007-03-22
    • US11531975
    • 2006-09-14
    • Anant AgarwalSei-Hyung RyuMatthew Donofrio
    • Anant AgarwalSei-Hyung RyuMatthew Donofrio
    • H01L21/425
    • H01L21/0485H01L21/0495H01L21/268H01L29/6606Y10S438/931
    • Methods of forming a silicon carbide semiconductor device are disclosed. The methods include forming a semiconductor device at a first surface of a silicon carbide substrate having a first thickness, and mounting a carrier substrate to the first surface of the silicon carbide substrate. The carrier substrate provides mechanical support to the silicon carbide substrate. The methods further include thinning the silicon carbide substrate to a thickness less the first thickness, forming a metal layer on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate, and locally annealing the metal layer to form an ohmic contact on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate. The silicon carbide substrate is singulated to provide a singulated semiconductor device.
    • 公开了形成碳化硅半导体器件的方法。 所述方法包括在具有第一厚度的碳化硅衬底的第一表面上形成半导体器件,以及将载体衬底安装到碳化硅衬底的第一表面上。 载体衬底为碳化硅衬底提供机械支撑。 所述方法还包括将碳化硅衬底减薄至小于第一厚度的厚度,在与碳化硅衬底的第一表面相对的稀薄的碳化硅衬底上形成金属层,并局部退火金属层以在其上形成欧姆接触 薄碳化硅衬底与碳化硅衬底的第一表面相对。 将碳化硅衬底分离以提供单片半导体器件。
    • 98. 发明授权
    • Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
    • 具有抑制少数载流子注入的碳化硅结屏障肖特基二极管
    • US08901699B2
    • 2014-12-02
    • US11126816
    • 2005-05-11
    • Sei-Hyung RyuAnant K. Agarwal
    • Sei-Hyung RyuAnant K. Agarwal
    • H01L29/47H01L29/872H01L29/66H01L29/06H01L29/16
    • H01L29/6606H01L29/0615H01L29/0619H01L29/1608H01L29/872
    • Integral structures that block the current conduction of the built-in PiN diode in a junction barrier Schottky (JBS) structure are provided. A Schottky diode may be incorporated in series with the PiN diode, where the Schottky diode is of opposite direction to that of the PiN diode. A series resistance or and insulating layer may be provided between the PiN diode and a Schottky contact. Silicon carbide Schottky diodes and methods of fabricating silicon carbide Schottky diodes that include a silicon carbide junction barrier region disposed within a drift region of the diode are also provided. The junction barrier region includes a first region of silicon carbide having a first doping concentration in the drift region of the diode and a second region of silicon carbide in the drift region and disposed between the first region of silicon carbide and a Schottky contact of the Schottky diode. The second region is in contact with the first region of silicon carbide and the Schottky contact. The second region of silicon carbide has a second doping concentration that is less than the first doping concentration.
    • 提供阻塞内部PiN二极管在结屏障肖特基(JBS)结构中的电流传导的积分结构。 肖特基二极管可以与PiN二极管串联,其中肖特基二极管与PiN二极管的方向相反。 可以在PiN二极管和肖特基接触之间提供串联电阻或绝缘层。 还提供了碳化硅肖特基二极管和制造碳化硅肖特基二极管的方法,其包括设置在二极管的漂移区域内的碳化硅结壁垒区域。 结阻挡区域包括在二极管的漂移区域中具有第一掺杂浓度的碳化硅的第一区域和漂移区域中的第二碳化硅区域,并且设置在碳化硅的第一区域与肖特基的肖特基接触之间 二极管。 第二区域与碳化硅的第一区域和肖特基接触部接触。 碳化硅的第二区域具有小于第一掺杂浓度的第二掺杂浓度。
    • 100. 发明申请
    • SEMICONDUCTOR DEVICE HAVING HIGH PERFORMANCE CHANNEL
    • 具有高性能通道的半导体器件
    • US20120223330A1
    • 2012-09-06
    • US13039441
    • 2011-03-03
    • Sarit DharSei-Hyung RyuLin ChengAnant Agarwal
    • Sarit DharSei-Hyung RyuLin ChengAnant Agarwal
    • H01L29/161H01L21/22
    • H01L29/107H01L21/225H01L29/1608H01L29/66068H01L29/66477H01L29/66568
    • Semiconductor devices having a high performance channel and method of fabrication thereof are disclosed. Preferably, the semiconductor devices are Metal-Oxide-Semiconductor (MOS) devices, and even more preferably the semiconductor devices are Silicon Carbide (SiC) MOS devices. In one embodiment, a semiconductor device includes a SiC substrate of a first conductivity type, a first well of a second conductivity type, a second well of the second conductivity type, and a surface diffused channel of the second conductivity type formed at the surface of semiconductor device between the first and second wells. A depth and doping concentration of the surface diffused channel are controlled to provide increased carrier mobility for the semiconductor device as compared to the same semiconductor device without the surface diffused channel region when in the on-state while retaining a turn-on, or threshold, voltage that provides normally-off behavior.
    • 公开了具有高性能通道的半导体器件及其制造方法。 优选地,半导体器件是金属氧化物半导体(MOS)器件,并且甚至更优选半导体器件是碳化硅(SiC)MOS器件。 在一个实施例中,半导体器件包括第一导电类型的SiC衬底,第二导电类型的第一阱,第二导电类型的第二阱以及形成在第二导电类型的表面处的第二导电类型的表面扩散沟道 半导体器件在第一和第二阱之间。 控制表面扩散通道的深度和掺杂浓度,以便在处于导通状态同时保持导通状态或阈值时,与没有表面扩散沟道区的相同半导体器件相比,为半导体器件提供增加的载流子迁移率, 电压提供常态动作。