会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 97. 发明授权
    • Antifuse programmable element using ferroelectric material
    • 防腐可编程元件采用铁电材料
    • US5463244A
    • 1995-10-31
    • US249870
    • 1994-05-26
    • Carlos A. P. De AraujoLarry D. McMillanJoseph D. Cuchiaro
    • Carlos A. P. De AraujoLarry D. McMillanJoseph D. Cuchiaro
    • H01L23/525H01L27/02
    • H01L23/5252H01L2924/0002H01L2924/3011
    • An electrically programmable antifuse element using ferroelectric materials for the insulative dielectric layer, methods for producing same, and an integrated circuit applying a plurality of ferroelectric antifuse elements in a two dimensional matrix of rows and columns for use as a programmable logic device (PLD) or as a programmable read-only memory (PROM). A ferroelectric material is formed between two conductive electrodes to create a ferroelectric antifuse element. In an alternative embodiment, a plurality of chemically distinct materials is layered to form the dielectric layer. The combined application of an AC electric field and a DC electric field breaks down the ferroelectric material to form a low-resistance conductive filament. The synergy of the two electric fields permits programming antifuse elements of the present invention by applying DC electric fields as low as 2 volts amplitude. In the preferred embodiment, as compared to prior designs, antifuse devices of the present invention display higher resistivity in the unprogrammed state due to the high dielectric constant of ferroelectric materials and lower resistivity in the programmed state because the ferroelectric material breaks down into metal oxide conductive filaments. The resistivity of the conductive filament may be reduced further by the blending of materials through substitution rather than doping processes.
    • 使用用于绝缘介电层的铁电材料的电可编程反熔丝元件,其制造方法和在行和列的二维矩阵中施加多个铁电反熔丝元件的集成电路,用作可编程逻辑器件(PLD)或 作为可编程只读存储器(PROM)。 在两个导电电极之间形成铁电材料以产生铁电反熔丝元件。 在替代实施例中,层叠多个化学上不同的材料以形成电介质层。 交流电场和直流电场的组合应用使铁电材料分解形成低电阻导电细丝。 两个电场的协同作用允许通过施加低至2伏的DC电场来编程本发明的反熔丝元件。 在优选实施例中,与现有设计相比,本发明的反熔丝器件由于铁电材料的高介电常数和编程状态下的较低电阻率而在未编程状态下显示较高的电阻率,因为铁电材料分解为金属氧化物导电 细丝。 导电丝的电阻率可以通过代替而不是掺杂工艺的材料掺合进一步降低。
    • 100. 发明授权
    • Ferroelectric integrated circuit
    • 铁电集成电路
    • US5561307A
    • 1996-10-01
    • US276474
    • 1994-07-18
    • Takashi MiharaHiroyuki YoshimoriHitoshi WatanabeLarry D. McMillanCarlos P. De Araujo
    • Takashi MiharaHiroyuki YoshimoriHitoshi WatanabeLarry D. McMillanCarlos P. De Araujo
    • H01L27/04H01L21/02H01L21/822H01L21/8242H01L21/8246H01L27/10H01L27/105H01L27/108H01L29/76C23C14/00H01L29/94
    • H01L27/10852H01L27/10808H01L28/60H01L28/55
    • An oversize ferroelectric capacitor is located against the contact hole to the MOSFET source/drain in a DRAM. A barrier layer made of titanium nitride, titanium tungsten, tantalum, titanium, tungsten, molybdenum, chromium, indium tin oxide, tin dioxide, ruthenium oxide, silicon, silicide, or polycide lies between the ferroelectric layer and the source drain. The barrier layer may act as the bottom electrode of the ferroelectric capacitor, or a separate bottom electrode made of platinum may be used. In another embodiment in which the barrier layer forms the bottom electrode, an oxide layer less than 5 nm thick is located between the barrier layer and the ferroelectric layer and the barrier layer is made of silicon, silicide, or polycide. A thin silicide layer forms and ohmic contact between the barrier layer and the source/drain. The capacitor and the barrier layer are patterned in a single mask step. The ends of the capacitor are stepped or tapered. In another embodiment both the bottom and top electrode may be made of silicon, silicide, polycide or a conductive oxide, such as indium tin oxide, tin dioxide, or ruthenium oxide.
    • 超大型铁电电容器位于DRAM中的MOSFET源极/漏极的接触孔处。 在铁电层和源极漏极之间,由氮化钛,钛钨,钽,钛,钨,钼,铬,氧化铟锡,二氧化锡,氧化钌,硅,硅化物或多晶硅化物形成的阻挡层。 阻挡层可以用作铁电电容器的底部电极,或者可以使用由铂制成的单独的底部电极。 在其中阻挡层形成底部电极的另一个实施例中,小于5nm厚的氧化物层位于势垒层和铁电层之间,阻挡层由硅,硅化物或多硅化物制成。 薄的硅化物层在阻挡层和源极/漏极之间形成欧姆接触。 在单个掩模步骤中对电容器和阻挡层进行图案化。 电容器的端部是阶梯式或锥形的。 在另一个实施例中,底部和顶部电极可以由硅,硅化物,多晶硅或导电氧化物,例如氧化铟锡,二氧化锡或氧化钌制成。