会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • 프로펠러로 달리는 전기자동차 등 각종 운송기관
    • 各种运输车辆,如电动车用螺旋桨运行
    • KR1020170092487A
    • 2017-08-11
    • KR1020170076956
    • 2017-06-15
    • 오성
    • 오성
    • B60L8/00B60K16/00B64C11/18
    • B60L8/006B60K16/00B60K2016/006B60L2200/10B60L2200/18B60L2200/26B60L2200/32B60L2230/24B64C11/18
    • 본발명은지금까지각종비행체들에주로사용해왔던프로펠러(회전날개)를각종차량, 기차, 선박등의운송기관들에적용하여, 보다적은동력원으로보다큰 추력을얻어각종운송기관들이에너지효율을높여운행할수 있도록하는발상전환의발명이다. 이것은현재일부상용되고있는전기운송기관들이모터로(각운송기관본체의무게가실어있는) 바퀴의회전축을직접회전시켜구동시키기때문에돌림힘(torque)의회전반지름이극히적어모터의구동의힘이크게들지만, 본발명은프로펠러로추력을얻어각종차량, 기차, 선박등을추진시켜나가기때문에바퀴등을회전시키는돌림힘이커지게되어보다적은프로펠러를회전시키는모터의구동의힘으로도각종차량, 기차, 선박등의운송기관들을추진시켜운행할수 있게해준다. 또한본 발명은본 발명에서사용하게되는깃단회전날개를제공해줌으로써, 지금까지탄소연료기반한내연기관엔진시대에서전기모터에기반한전기차로급속히변해가고있는이 시대에프로펠러를사용하는신개념의전기운송기관시대를열게해준다.
    • 通过施加推进器(旋转叶片)本发明主要被用于各种飞机迄今对各种车辆,火车,交通机构,如船舶使用的,需要以较低的动力源的更大的力到各种传输机构,以增加能量效率 这是思想变化的一个发明,可以运作。 现在这是一些商业和电气运输当局到电机,因为它驱动旋转轮的旋转轴线(即,其携带每个传输发动机主体的重量)直接扭矩(转矩)国会总直径是非常少的电动机驱动力的大 然而,由于本发明通过推进器推进各种车辆,火车,轮船等,所以减小了使螺旋桨旋转的电动机的驱动力, 美国的运输机构。 此外,本发明通过提供一种gitdan旋转,这将在本发明中使用的叶片,所述的碳基燃料内燃机,在这个时代在发动机时代快速byeonhaegago基于所述电动机运输代理期间到目前为止电动车辆所用的螺旋桨电力的新概念 它将打开。
    • 5. 发明公开
    • 헬리콥터 앤티토크 장치용 블레이드
    • 用于直升机防扭装置的刀片
    • KR1020150013104A
    • 2015-02-04
    • KR1020140191104
    • 2014-12-26
    • 에어버스 헬리콥터스
    • 제르베마르크그레스레브누아핑크세바스티앙수드르로랑
    • B64C27/82B64C27/467B64C11/18
    • B64C11/18B64C27/82B64C2027/8254Y10S416/02Y10S416/05B64C27/467
    • 본 발명은 헬리콥터의 꼬리 앤티토크 장치용 블레이드(10)에 관한 것으로서, 상기 앤티토크 장치는 덕트형 회전날개(13)를 포함하며, 상기 블레이드(1)는 개별 구간부, 전연(2) 및 후연(3)의 조립체를 포함하며, 블레이드는, 적어도 두 개가 구간부(5, 6)의 조립체; 측단면의 전연(2)로부터 시작하여 코드(C)의 25% 내지 50%의 범위의 거리로 연장되며, 블레이드의 뿌리(5)로부터 단부(6)까지 연속적으로 후방 스위프, 전방 스위피 및 최후방 스위프를 갖는 굴곡 형상을 블레이드(1)의 면에 나타내는 측단면의 적층선(4); 및 블레이드의 뿌리(5)에서 코드 값(C
      ref )의 1.6배 이하의 단부코드값에 도달하도록 적어도 단부측단면(1a)에 걸쳐서 블레이드(1)의 단부(6) 쪽으로 하면서 커지는 코드를 포함한다.
    • 本发明涉及一种用于能够增加最大推力的直升机的尾部抗扭矩装置的叶片(10)。 抗扭矩装置包括导管式旋转刀片(13)。 叶片(1)包括单独的部分部分和在前缘(2)和后缘(3)中的组件。 此外,至少两个叶片包括:部分部件(5,6)的组件; 从横截面的前缘(2)开始并延伸到代码(C)的25-50%的范围内的距离的横截面的堆叠线(4),并且指示具有 从叶片的根部(5)到叶片(1)的表面上的端部(6)连续地进行后掠,前扫掠和最后扫描; 以及通过至少一个端侧横截面(1a)朝着刀片(1)的端部(6)变得越来越大的代码以达到从根的代码值(C_ref)的1.6倍或者更小的结束代码值 (5)。
    • 6. 发明公开
    • 터보프롭 항공기용 프로펠러 블레이드 공력설계장치 및 그 제어방법
    • 用于区域涡轮机的螺旋叶片的空气动力学设计装置及其分析方法
    • KR1020140114174A
    • 2014-09-26
    • KR1020130028688
    • 2013-03-18
    • 한국항공우주산업 주식회사
    • 최원
    • G06F17/50G06F19/00B64C11/16
    • G06F17/5095B64C11/18
    • The present invention provides a device for aerodynamic design on a propeller blade for a turboprop aircraft and an analysis method thereof. The analysis method comprises: a first step of using a non-lattice method which calculates a fully Lagrangian equation using a lattice Boltzmann method to solve a flow control equation for a propeller designed by an aerodynamic shape design module; a second step of using a multiple reference frame (MRF) technique of dividing a flow field into a rotating area and a non-rotating area, adding a virtual force at the noninertial coordinate system to a momentum equation with respect to the rotating area, and solving the momentum equation in order to analyze a rotor on the propeller designed by the aerodynamic shape design module in the first step; and a third step of analyzing aerodynamics by using, as an initial input value of a sliding lattice technique, the result values collected by analyzing the propeller designed by the aerodynamic shape design module with the MRF technique used in the second step. The present invention as described above can analyze a set airfoil model by a set airfoil analysis method such that the airfoil model has a minimum energy loss and can design the shape of a propeller airfoil model according to the produced analysis result data to design propeller performance and shape satisfying requirements for a minimum energy loss, thereby simply designing an eco-friendly and economical propeller for a turboprop aircraft.
    • 本发明提供了一种用于涡轮螺旋桨飞机的螺旋桨叶片上的空气动力学设计及其分析方法。 分析方法包括:使用非格方法的第一步骤,其使用格子波尔兹曼方法来计算完全拉格朗日方程,以求解由空气动力学形状设计模块设计的螺旋桨的流量控制方程; 使用将流场划分成旋转区域和非旋转区域的多参考框架(MRF)技术的第二步骤,将非正定坐标系中的虚拟力相对于旋转区域的动量方程相加,以及 解决动量方程,以分析第一步中由空气动力学形状设计模块设计的螺旋桨上的转子; 以及通过使用通过使用第二步骤中使用的MRF技术分析由空气动力学形状设计模块设计的螺旋桨而收集的结果值作为滑动格子技术的初始输​​入值来分析空气动力学的第三步骤。 如上所述的本发明可以通过设定的翼型分析方法来分析设定的翼型模型,使得翼型模型具有最小的能量损失,并且可以根据生成的分析结果数据设计螺旋桨翼型的形状来设计螺旋桨性能, 形状满足最小能量损失的要求,从而简单地设计一种涡轮螺旋桨飞机的环保经济螺旋桨。
    • 10. 发明授权
    • 터보프롭 항공기용 어드번스드 프로펠러 블레이드의 공력 설계 해석 방법
    • 用于涡轮飞机的高级螺旋桨叶片的空气动力学设计与分析方法
    • KR101374253B1
    • 2014-03-13
    • KR1020120103314
    • 2012-09-18
    • 한국항공우주산업 주식회사
    • 최원김지홍
    • G06F17/50G06F19/00B64C11/18
    • G06F17/5095B64C11/18
    • The purpose of the present invention is to provide an aerodynamic design and analysis method of an advanced propeller blade for turboprop aircraft, which is capable of maintaining low noise while obtaining a high-efficiency thrust for high-speed flight. To achieve the above purpose, the aerodynamic design and analysis method of an advanced propeller blade for turboprop aircraft according to the present invention comprises the steps of: setting the target aerodynamic design points of an advanced propeller for turboprop aircraft (S100); designing a shape of the advanced propeller for turboprop aircraft such that aerodynamic forces on the advanced propeller for turboprop aircraft reaches the aerodynamic design points (S200); applying a sweep angle to the blades of the designed advanced propeller for turboprop aircraft and draw a final shape of the advanced propeller for the turboprop aircraft (S300); computationally analyzing the drawn final shape of the advanced propeller for the turboprop aircraft (S400); and comparing the aerodynamic design points with the result values of the aerodynamic forces on the computationally analyzed final shape and compensating the result values (S500). [Reference numerals] (AA) Start; (BB) End; (S100) Set the target aerodynamic design points of an advanced propeller for turboprop aircraft; (S200) Design a shape of the advanced propeller for turboprop aircraft such that aerodynamic forces on the advanced propeller for turboprop aircraft reach the aerodynamic design points; (S300) Apply a sweep angle to the blades of the designed advanced propeller for turboprop aircraft and draw a final shape of the advanced propeller for turboprop aircraft; (S400) Analyze computationally aerodynamic forces on the drawn final shape of the advanced propeller for turboprop aircraft; (S500) Compare the aerodynamic design points with the result values of aerodynamic forces on the computationally analyzed final shape and compensate the result values
    • 本发明的目的是提供一种用于涡轮螺旋桨飞机的先进螺旋桨叶片的空气动力学设计和分析方法,其能够在获得用于高速飞行的高效推力的同时保持低噪声。 为了实现上述目的,根据本发明的涡轮螺旋桨飞机的先进螺旋桨叶片的空气动力学设计和分析方法包括以下步骤:设置用于涡桨飞机的先进螺旋桨的目标空气动力学设计点(S100); 设计涡轮螺旋桨飞机先进螺旋桨的形状,使涡轮螺旋桨飞机先进螺旋桨上的空气动力达到空气动力学设计点(S200); 对涡轮螺旋桨飞机设计的先进螺旋桨的叶片施加扫掠角,并绘制涡轮螺旋桨飞机的先进螺旋桨的最终形状(S300); 计算分析涡轮螺旋桨飞机先进螺旋桨的最终形状(S400); 并将空气动力学设计点与计算分析的最终形状的空气动力的结果值进行比较,并补偿结果值(S500)。 (附图标记)(AA)开始; (BB)结束; (S100)设置涡轮螺旋桨飞机先进螺旋桨的目标空气动力学设计点; (S200)设计涡轮螺旋桨飞机先进螺旋桨的形状,使涡轮螺旋桨飞机先进螺旋桨上的空气动力达到空气动力学设计点; (S300)对涡轮螺旋桨飞机设计的先进螺旋桨的叶片应用扫掠角,并绘制涡轮螺旋桨飞机先进螺旋桨的最终形状; (S400)分析涡轮螺旋桨飞机先进螺旋桨拉伸最终形状的计算空气动力; (S500)将空气动力学设计点与计算分析的最终形状的空气动力学结果值进行比较,并补偿结果值