会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明公开
    • 바이오 센서 및 그의 구동 방법
    • 生物传感器及其驱动方法
    • KR1020110032172A
    • 2011-03-30
    • KR1020090089537
    • 2009-09-22
    • 한국전자통신연구원
    • 박찬우안창근아칠성김태엽김안순양종헌성건용
    • G01N27/416G01N27/414G01N33/48
    • G01N27/4145
    • PURPOSE: A biosensor and a driving method thereof are provided to remarkably improve sensitivity and reaction velocity by forming a probe molecule on a reference electrode. CONSTITUTION: A biosensor comprises a transistor, a fluid pipe(250), a reference electrode(260), and a probe molecular layer(320). The transistor has a substrate(200), a gate insulator film(217), and a source/drain electrode(215). The substrate has a channel formed in a source, a drain, and a gap between the source and the drain. The gate insulator film is formed on the channel. The source/drain electrode is connected to the source and the drain. The fluid pipe covers the transistor and moves a sample solution with target molecules. The reference electrode is formed in the inner wall of the fluid pipe. The probe molecule layer is attached on the top of the reference electrode and reacts with the target molecules.
    • 目的:提供生物传感器及其驱动方法,通过在参比电极上形成探针分子来显着提高灵敏度和反应速度。 构成:生物传感器包括晶体管,流体管(250),参比电极(260)和探针分子层(320)。 晶体管具有基板(200),栅极绝缘膜(217)和源极/漏极(215)。 衬底具有形成在源极,漏极和源极和漏极之间的间隙的沟道。 栅极绝缘膜形成在沟道上。 源极/漏极连接到源极和漏极。 流体管覆盖晶体管并移动具有目标分子的样品溶液。 参考电极形成在流体管的内壁中。 探针分子层附着在参比电极的顶部并与目标分子反应。
    • 5. 发明公开
    • 바이오 센서 칩
    • 生物传感器芯片
    • KR1020100072533A
    • 2010-07-01
    • KR1020080130964
    • 2008-12-22
    • 한국전자통신연구원
    • 김태엽양종헌안창근박찬우아칠성김안순백인복성건용박선희
    • G01N35/00G01N33/48G01N33/53
    • PURPOSE: A biosensor chip is provided to reduce the manufacturing cost of the biosensor chip compared to a conventional biosensor chip and to easily utilize the small sized biosensor chip. CONSTITUTION: A biosensor chip comprises the following: a sensing unit(150) detecting a target material by the mutual reaction between the target material and a sensing material; a circuit board unit electrically connected with the sensing unit; a channel unit(140) supplying a fluidic material containing the target material to the sensing unit; and a cover(120) covering the channel unit and the sensing unit, while being connected with the circuit board unit. The cover includes a solution inlet(124) and a solution outlet(125) for the fluidic material.
    • 目的:提供生物传感器芯片,以降低生物传感器芯片的制造成本,与传统的生物传感器芯片相比,并且易于利用小型生物传感器芯片。 构成:生物传感器芯片包括:感测单元(150),通过目标材料和感测材料之间的相互反应检测目标材料; 与感测单元电连接的电路板单元; 通道单元(140),将含有所述目标材料的流体材料供应到所述感测单元; 以及在与电路板单元连接的同时覆盖通道单元和感测单元的盖(120)。 盖子包括用于流体材料的溶液入口(124)和溶液出口(125)。
    • 6. 发明公开
    • 고감도 반도체 FET 센서 및 그 제조방법
    • 高灵敏度FET传感器和FET传感器的制造方法
    • KR1020090062373A
    • 2009-06-17
    • KR1020070129581
    • 2007-12-13
    • 한국전자통신연구원
    • 양종헌백인복안창근박찬우김안순유한영아칠성김태엽전명심장문규
    • H01L21/336H01L29/78
    • G01N27/4145H01L29/66818H01L29/7853
    • A high sensitive sensor and a manufacturing method thereof are provided to obtain a high signal by controlling depletion and accumulation of a channel by combining a target material and a sensing material in both sides. An SOI(Silicon On Insulator) substrate is formed in an upper part of a semiconductor substrate. A mask pattern is formed by performing a lithography process in the upper part of the SOI substrate. The structure of a pin shape is formed by etching a silicon layer in the upper part of the SOI substrate. The sensor structure with a pin shaped structure is formed on the semiconductor substrate. A metal electrode is deposited by implanting the ion for electrical ohmic contact to the sensor structure. A sensing material combined in a target material is fixed in both sidewalls of the pin shaped structure. The path for penetrating the target material through the pin-shaped structure is formed on the sensor structure.
    • 提供了一种高灵敏度传感器及其制造方法,以通过在两侧组合目标材料和感测材料来控制通道的耗尽和累积来获得高信号。 在半导体衬底的上部形成SOI(绝缘体上硅)衬底。 通过在SOI衬底的上部进行光刻工艺来形成掩模图案。 针状结构通过在SOI衬底的上部蚀刻硅层而形成。 具有针状结构的传感器结构形成在半导体衬底上。 通过将用于电欧姆接触的离子注入传感器结构来沉积金属电极。 组合在目标材料中的感测材料固定在销形结构的两个侧壁中。 在传感器结构上形成穿过针状结构穿透目标材料的路径。
    • 7. 发明公开
    • 반도체 나노선 센서 소자 및 이의 제조 방법
    • 半导体纳米传感器器件及其制造方法
    • KR1020090058883A
    • 2009-06-10
    • KR1020070125679
    • 2007-12-05
    • 한국전자통신연구원
    • 박찬우안창근양종헌백인복아칠성유한영김안순김태엽장문규전명심
    • H01L29/00G01N27/00G01N33/48B82Y15/00
    • H01L29/0665B82Y10/00B82Y15/00H01L29/0673H01L29/78696
    • A semiconductor nano wire sensor and a manufacturing method thereof are provided to implement a silicon nano wire channel of a line width with several nano meters by using a photolithographic process. A first conductive single crystal silicon line pattern is formed in the uppermost layer of an SOI(Silicon On Insulator) substrate. A second conductive channel(216b) is formed in both ends of the line width direction of the first conductive single crystal silicon line pattern. The second conductive pad is formed in both sides of the longitudinal direction of the first conductive single crystal silicon line pattern. A first electrode(242) for applying a reverse bias voltage is formed in an undoped region of the first conductive single crystal silicon line pattern. A second electrode(232) for applying the bias voltage to both sides of the second conductive channel is formed on the second conductive pad.
    • 提供半导体纳米线传感器及其制造方法,通过使用光刻工艺来实现具有数纳米的线宽的硅纳米线通道。 在SOI(绝缘体上硅)衬底的最上层形成第一导电单晶硅线图形。 第二导电沟道(216b)形成在第一导电单晶硅线图案的线宽方向的两端。 第二导电焊盘形成在第一导电单晶硅线图案的纵向方向的两侧。 在第一导电单晶硅线图案的未掺杂区域中形成用于施加反向偏置电压的第一电极(242)。 在第二导电焊盘上形成用于将偏置电压施加到第二导电沟道两侧的第二电极(232)。
    • 10. 发明公开
    • 자기조립된 분자의 커버리지 분석용 기판 및 이를 이용하여자기조립된 분자의 커버리지를 분석하는 방법
    • 用于分析自组装分子的覆盖物的基材和使用其自组装分子的覆盖物的分析方法
    • KR1020080052294A
    • 2008-06-11
    • KR1020070082205
    • 2007-08-16
    • 한국전자통신연구원
    • 아칠성김안순유한영안창근양종헌백인복박찬우이성재
    • G01N33/48G01N33/53C12Q1/68B82Y15/00
    • G01N33/5308C12Q1/6825G01N33/54313G01N33/54393Y10T436/143333B82Y15/00
    • Substrates for analyzing the coverage of self-assembled molecules are provided to measure efficiently the presence and reaction degree of functional groups on the surface of self-assembled molecules by using nanoparticles without use of complicated methods such as FT-IR(Fourier Transform InfraRed), XPS(X-ray photoelectron spectroscopy) and fluorescence method. A substrate for analyzing the coverage of self-assembled molecules comprises: a substrate(100) for immobilizing biomaterials; a self-assembled molecule layer(102) formed on the substrate and having a functional group capable of reacting with an amine group; a capture DNA molecule(200) having the amine group to be combined with the self-assembled molecule layer; and a probe DNA molecule combining with the capture DNA molecule and having nanoparticles on the surface, wherein the functional group capable of reacting with an amine group is -SH, -NH2, -Si(OCH3)3, -Si(OC2H5)3 and -Si(Cl)3. Further, the substrate(100) for immobilizing biomaterial is one selected from a group consisting of glass, polycarbonate, polyester, polyethylene, polypropylene and wafer.
    • 提供用于分析自组装分子覆盖的底物,通过使用纳米粒子,有效地测量自组装分子表面官能团的存在和反应程度,而不使用复杂的方法,如FT-IR(傅立叶变换红外) XPS(X射线光电子能谱)和荧光法。 用于分析自组装分子的覆盖的基板包括:用于固定生物材料的基底(100); 形成在所述基板上并具有能够与胺基反应的官能团的自组装分子层(102); 具有与自组装分子层结合的胺基的捕获DNA分子(200); 和与捕获DNA分子结合并在表面上具有纳米颗粒的探针DNA分子,其中能与胺基反应的官能团为-SH,-NH2,-Si(OCH3)3,-Si(OC2H5)3和 -Si(CL)3。 此外,用于固定生物材料的基板(100)选自由玻璃,聚碳酸酯,聚酯,聚乙烯,聚丙烯和晶片组成的组中的一种。