会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Silicon carbide mos semiconductor device manufacturing method
    • 硅碳化镓半导体器件制造方法
    • JP2014082361A
    • 2014-05-08
    • JP2012229785
    • 2012-10-17
    • Fuji Electric Co Ltd富士電機株式会社
    • OGINO MASAAKI
    • H01L21/02H01L21/336H01L29/12H01L29/739H01L29/78
    • PROBLEM TO BE SOLVED: To inhibit the occurrence of wafer breakage or cracks even in a manufacturing method having a process of thinning a wafer by grinding a rear face on the side opposite to a surface on which a mark for identification is formed to a degree where a thickness is maintained at equal to or more than a thickness determined by at least a withstanding voltage.SOLUTION: A manufacturing method of a silicon carbide MOS semiconductor device comprises: an epitaxial layer formation process of growing an epitaxial layer on one principal surface of an n-type SiC semiconductor substrate; a formation process of a MOS gate structure on a surface layer of the epitaxial layer; a substrate thinning process of thinning the substrate by grinding the other principal surface of the substrate to a degree where a thickness equal to or more than a required substrate thickness determined depending on at least a withstanding voltage is maintained. The manufacturing method further comprises either before or after the epitaxial layer formation process, a process of forming a mark for identification on the one principal surface of the n-type SiC semiconductor substrate, in which a depth of the mark for identification is set at a depth shallower than a substrate thickness after the substrate thinning process.
    • 要解决的问题:即使在具有通过研磨在与形成有识别标记的表面相反的一侧的后表面来削薄晶片的方法的制造方法中,也可以抑制晶片断裂或裂纹的发生, 将厚度保持在至少由耐压确定的厚度以上的厚度。解决方案:碳化硅MOS半导体器件的制造方法包括:外延层形成工艺,其在一个主表面上生长外延层 n型SiC半导体衬底; 在外延层的表面层上形成MOS栅极结构的工艺; 通过研磨基板的另一个主表面使其厚度等于或大于至少根据耐受电压确定的所需基板厚度的程度而使基板变薄的基板薄化工艺。 该制造方法还包括在外延层形成工艺之前或之后,在n型SiC半导体衬底的一个主表面上形成用于识别的标记的处理,其中识别标记的深度设置为 深度比基板薄化处理后的基板厚度浅。
    • 2. 发明专利
    • Lateral diffusion width evaluation method of diffusion region formed in semiconductor device
    • 在半导体器件中形成的扩散区域的横向扩散宽度评估方法
    • JP2013120883A
    • 2013-06-17
    • JP2011268860
    • 2011-12-08
    • Fuji Electric Co Ltd富士電機株式会社
    • OGINO MASAAKIHIRUTA REIKO
    • H01L21/66
    • PROBLEM TO BE SOLVED: To provide a lateral diffusion width evaluation method of a diffusion region formed in a semiconductor device, which can measure a lateral diffusion width at a predetermined depth from a surface of a diffusion region at a depth of approximately 100 μm with high accuracy, and which can measure an in-plane distribution of a lateral diffusion width on a wafer with high efficiency.SOLUTION: A lateral diffusion width evaluation method comprises grinding to a predetermined depth T1, a rear face 1a of a wafer 1 in which a deep diffusion region 2 is formed; polishing or etching the rear face 1a of the wafer 1 to expose the diffusion region 2; stain-etching the exposed diffusion region 2; and subsequently, measuring a lateral diffusion width W1 of the stain-etched diffusion region 2. In this way, the lateral diffusion width W1 at the predetermined depth T1 can be measured with high accuracy.
    • 要解决的问题:提供形成在半导体器件中的扩散区域的横向扩散宽度评估方法,该扩散区域可以从大约100°的深度处的扩散区域的表面测量在预定深度处的横向扩散宽度 μm,并且可以高效率地测量晶片上的横向扩散宽度的面内分布。 解决方案:横向扩散宽度评估方法包括研磨到预定深度T1,形成深扩散区2的晶片1的背面1a; 抛光或蚀刻晶片1的背面1a以暴露扩散区域2; 污染蚀刻暴露的扩散区域2; 并且随后测量污迹蚀刻扩散区域2的横向扩散宽度W1。以这种方式,可以高精度地测量预定深度T1处的横向扩散宽度W1。 版权所有(C)2013,JPO&INPIT
    • 4. 发明专利
    • Method for manufacturing semiconductor device
    • 制造半导体器件的方法
    • JP2011243670A
    • 2011-12-01
    • JP2010112829
    • 2010-05-17
    • Fuji Electric Co Ltd富士電機株式会社
    • OGINO MASAAKIWAKIMOTO HIROKIMIYAZAKI MASAYUKI
    • H01L21/336H01L21/301H01L29/12H01L29/739H01L29/78
    • H01L29/66333H01L29/045H01L29/0657
    • PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device capable of securing strength of a wafer, and improving element performance.SOLUTION: A heat diffusion layer 7 is formed from a surface 2 of a wafer 1, a tapered trench 12 reaching the heat diffusion layer 7 is formed from a back surface 3 by anisotropic etching with an alkali solution, and a diffusion layer 21 within a trench is formed on a sidewall surface 13 of the trench 12. A separation layer 3 of a reverse blocking IGBT consists of the heat diffusion layer 7 and the diffusion layer 21 within the trench, and the heat diffusion layer 7 can be shallowly formed by forming the diffusion layer 21 within the trench, allowing the thermal diffusion time to be considerably reduced. A reverse breakdown voltage for the reverse blocking IGBT can be secured while an optimal value in a trade-off of an ON-state voltage and a switching loss can be selected by performing an ion implantation for forming the diffusion layer 21 within the trench and an ion implantation for forming a collector layer 22, separately.
    • 要解决的问题:提供一种能够确保晶片强度并提高元件性能的半导体器件的制造方法。 解决方案:从晶片1的表面2形成热扩散层7,到达热扩散层7的锥形沟槽12由背面3通过各向异性蚀刻用碱溶液形成,扩散层 21的沟槽形成在沟槽12的侧壁表面13上。反向阻断IGBT的分离层3由沟槽内的热扩散层7和扩散层21组成,并且热扩散层7可以是浅的 通过在沟槽内形成扩散层21形成,允许热扩散时间大大降低。 可以确保反向阻断IGBT的反向击穿电压,同时通过在沟槽内形成扩散层21的离子注入可以选择导通状态电压和开关损耗的权衡的最佳值, 用于形成集电极层22的离子注入。 版权所有(C)2012,JPO&INPIT
    • 5. 发明专利
    • Chemical vapor phase epitaxial growth device
    • 化学蒸气相外延生长装置
    • JP2003037077A
    • 2003-02-07
    • JP2001240142
    • 2001-08-08
    • Fuji Electric Co Ltd富士電機株式会社
    • SHIMIZU AKINORIHEBINUMA TADASHIOGINO MASAAKI
    • C23C16/52H01L21/205
    • PROBLEM TO BE SOLVED: To provide a chemical vapor phase epitaxial growth device in which a thin film can be formed on the wafer surface with uniform thickness.
      SOLUTION: The chemical vapor phase epitaxial growth device comprises an outer container tube 5 having one closed end (upper part), an inner container tube 4 disposed in the outer container tube 5 and serving as a reaction chamber 9, a supporting jig 2 contained in the inner container tube 4 and referred to a boat, and an electric furnace 7 containing the outer container tube 5 and having a heater 6 for heating a wafer 1 set in the supporting jig 2, wherein a plurality of ring-like adsorption jigs 3 are fixed to the inner wall of the inner container tube 4. Since the adsorption jigs 3 adsorb radical gas, a thin film can be formed uniformly on the wafer 1.
      COPYRIGHT: (C)2003,JPO
    • 要解决的问题:提供一种化学气相外延生长装置,其中可以在具有均匀厚度的晶片表面上形成薄膜。 解决方案:化学气相外延生长装置包括具有一个封闭端(上部)的外部容器管5,设置在外部容器管5中并用作反应室9的内部容器管4, 内部容器管4和称为舟皿的电炉7和包含外部容器管5并具有用于加热设置在支撑夹具2中的晶片1的加热器6的电炉7,其中多个环状吸附夹具3为 固定在内容器管4的内壁上。由于吸附夹具3吸附自由基气体,所以可以在晶片1上均匀地形成薄膜。
    • 6. 发明专利
    • Semiconductor device and method of manufacturing semiconductor device
    • 半导体器件及制造半导体器件的方法
    • JP2011181770A
    • 2011-09-15
    • JP2010045740
    • 2010-03-02
    • Fuji Electric Co Ltd富士電機株式会社
    • WAKIMOTO HIROKIIGUCHI KENICHIYOSHIKAWA ISAONAKAJIMA TSUNEHIROTANAKA SHUNSUKEOGINO MASAAKI
    • H01L29/739H01L29/06H01L29/78
    • H01L21/308H01L21/302H01L21/78H01L29/06
    • PROBLEM TO BE SOLVED: To provide a semiconductor device that is prevented from deteriorating in electric characteristics, and to provide a method of manufacturing the semiconductor device. SOLUTION: At a voltage blocking structure part of a reverse blocking type IGBT, a surface layer on a top side of an n-type drift region 1 is provided with a plurality of field limiting rings (FLR) 2 and a channel stopper 3. A surface layer on a reverse side of the n-type drift region 1 is provided with a p-type collector region 7. An element end part is provided with a p + -type isolation layer 11 for obtaining a voltage blocking capability. Further, a recess part 6 is provided which reaches the p + -type isolation layer 11 from the reverse side of the n-type drift region 1. A surface layer on a side wall and a bottom surface of the recess 6 is provided with a p-type region 8, and the p + -type isolation layer 11 and p-type collector region 7 are electrically connected. Further, the p + -type isolation layer 11 is in contact with the channel stopper 3. Furthermore, the p + -type isolation layer 11 is provided including a cleavage surface 21 having one side at a boundary 20 between the bottom surface and side wall of the recess part 6. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种防止电特性恶化的半导体器件,并提供一种半导体器件的制造方法。 解决方案:在反向阻挡型IGBT的电压阻挡结构部分,n型漂移区1的上侧的表面层设置有多个场限制环(FLR)2和沟道阻塞 在n型漂移区域1的背面上的表面层设置有p型集电区域7.元件端部设置有用于 获得电压阻断能力。 此外,设置从n型漂移区域1的反面到达p + SP>型隔离层11的凹部6。在侧壁和底面的表面层 凹部6设置有p型区域8,并且p + SP型隔离层11和p型集电极区域7电连接。 此外,p + 型隔离层11与通道阻挡件3接触。此外,提供了p
    • 7. 发明专利
    • Method of manufacturing semiconductor device
    • 制造半导体器件的方法
    • JP2013197169A
    • 2013-09-30
    • JP2012060385
    • 2012-03-16
    • Fuji Electric Co Ltd富士電機株式会社
    • OGINO MASAAKI
    • H01L21/76H01L29/06H01L29/739H01L29/78
    • PROBLEM TO BE SOLVED: To prevent occurrence of wafer cracking by preventing degradation in wafer strength in a case where the thickness of wafer is reduced.SOLUTION: On a first main surface of a wafer 10, there are formed a front surface element structure of invert block type IGBT, a front surface element structure of a breakdown resistant structure part, and a p-type separation region of a separation structure part. The front surface element structure of invert block type IGBT and the front surface element structure of the breakdown resistant structure part are formed in an element formation region 1 of the wafer 10. The p-type separation region of the separation structure part is formed on an element end part side of the element formation region 1 in such a manner as to enclose the breakdown resistant structure part. Then, after the thickness of the wafer 10 is reduced from a second main surface side of the wafer 10, a groove 3 which reaches the p-type separation region is formed on the second main surface of the wafer 10. Here, a straight line to an intersection of the groove 3 is taken as 3. Then, a p-type collector layer is formed on the second main surface of the wafer 10 and a p-type layer contacting the p-type collector layer and the p-type separation region is formed on a side wall of the groove 3. Thus the invert block type IGBT is completed.
    • 要解决的问题:为了防止在晶片厚度减小的情况下防止晶片强度降低而发生晶片裂纹。解决方案:在晶片10的第一主表面上形成反转的前表面元件结构 块式IGBT,耐击结构部分的前表面元件结构和分离结构部分的p型分离区域。 反向块型IGBT的前表面元件结构和耐击结构部分的前表面元件结构形成在晶片10的元件形成区域1中。分离结构部分的p型分离区域形成在 元件形成区域1的元件端部侧,以包围耐击结构部分的方式。 然后,在从晶片10的第二主面侧减薄晶片10的厚度之后,在晶片10的第二主面上形成到达p型分离区域的槽3。这里,直线 将沟槽3的交点作为3.然后,在晶片10的第二主表面上形成p型集电体层,并且与p型集电极层接触的p型层和p型分离 区域形成在槽3的侧壁上。因此,倒装块型IGBT完成。
    • 9. 发明专利
    • Method of manufacturing inverse prevention type igbt equipped with inclined side surface
    • 装有反向预防型IGBT的方法,内置有侧面表面
    • JP2012089560A
    • 2012-05-10
    • JP2010232476
    • 2010-10-15
    • Fuji Electric Co Ltd富士電機株式会社
    • KUBOUCHI MOTOYOSHISHIMIZU HIDEONAKAZAWA HARUOOGINO MASAAKI
    • H01L29/739H01L21/306H01L21/308H01L21/336H01L29/78
    • PROBLEM TO BE SOLVED: To provide a method of manufacturing an inverse prevention type IGBT equipped with an inclined side surface, causing little unwanted etching that reaches the lower side of an etching mask at the time when forming a slope on the side surface of a semiconductor chip, resulting in no contamination with etching liquid.SOLUTION: The manufacturing method includes a first step to form an MOS gate structure 10 in an element active region and an aluminum electrode film 18 on one main surface of an n-type semiconductor substrate 30 whose main surface is a (100) surface, a second step to form an ion implantation damage layer 21 with a p-type dopant as an impure substance by ion implantation or a high-concentration p-type layer 21a which is available by activating the ion implantation damage layer 21 on the other main surface, a third step to form a tapered inclined groove 23 by performing wet anisotropic etching on the other surface of the n-type semiconductor substrate, with the ion implantation damage layer or high-concentration p-type layer 21a as a mask, and a fourth step to form a p-type separation layer 4 on an inclined surface 9a constituting the inclined groove 23 by the ion implantation of the p-type dopant.
    • 要解决的问题:为了提供一种制造具有倾斜侧表面的防逆型IGBT的方法,在形成侧表面上的斜面时,几乎不需要蚀刻到达蚀刻掩模的下侧 的半导体芯片,导致没有腐蚀液体的污染。 解决方案:制造方法包括在元件有源区中形成MOS栅极结构10的第一步骤和主表面为(100)的n型半导体衬底30的一个主表面上的铝电极膜18, 表面,通过离子注入形成具有p型掺杂剂作为不纯物质的离子注入损伤层21的第二步骤或通过在另一个上激活离子注入损伤层21可获得的高浓度p型层21a 主表面,通过在离子注入损伤层或高浓度p型层21a作为掩模在n型半导体衬底的另一个表面上进行湿式各向异性蚀刻来形成锥形倾斜槽23的第三步骤,以及 通过p型掺杂剂的离子注入在构成倾斜槽23的倾斜表面9a上形成p型分离层4的第四步骤。 版权所有(C)2012,JPO&INPIT