会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Estimation device
    • 估计装置
    • JP2008262288A
    • 2008-10-30
    • JP2007102915
    • 2007-04-10
    • Denso CorpNara Institute Of Science & Technology国立大学法人 奈良先端科学技術大学院大学株式会社デンソー
    • SHIMIZU MIKIROFUKAYA NAOKIBANDO YOSHIJISHIBATA TOMOHIROISHII MAKOTO
    • G06T7/60G01B11/26G06T1/00G06T7/00G06T7/20
    • PROBLEM TO BE SOLVED: To provide an estimation device capable of obtaining stable estimation results just after the start of the processing and enhancing an estimation accuracy.
      SOLUTION: A face model providing portion 6 provides an average face model S
      A stored in an average face model storage portion 61 to an estimation portion 8 estimating an affine parameter A
      t for obtaining a head pose via a face model switching portion 63 when an individual face model learning portion 62 starts in response to an initialization instruction. The individual face model learning portion 62 acquires a result of tracking characteristic points (observed values) on the image by the estimation portion 8, learns an individual face model S
      P , terminates learning the individual face model when a free energy of the individual face model S
      P is over a free energy of the average face model S
      A , and switches a face model C
      a provided to the estimation portion 8 from the average face model S
      A to the individual face model S
      P .
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供一种能够在开始处理之后获得稳定的估计结果并提高估计精度的估计装置。 解决方案:面部模型提供部分6将存储在平均面部模型存储部分61中的平均面部模型S A 提供给估计部分8,估计仿射参数A SB>,用于当个人面部模型学习部分62响应初始化指令开始时通过面部模型切换部分63获得头部姿势。 个人面部模型学习部分62通过估计部分8获取跟踪特征点(观察值)的结果,学习个人面部模型S P ,终止学习个人面部模型时 个人脸部模型S P 的自由能超过平均脸部模型S A 的自由能,并切换面部模型C a 从平均面部模型S A 提供给估计部分8到个人面部模型S P 。 版权所有(C)2009,JPO&INPIT
    • 3. 发明专利
    • Estimation device
    • 估计装置
    • JP2007172237A
    • 2007-07-05
    • JP2005368124
    • 2005-12-21
    • Denso CorpNara Institute Of Science & Technology国立大学法人 奈良先端科学技術大学院大学株式会社デンソー
    • FUKAYA NAOKISHIMIZU MIKIROISHII MAKOTOSHIBATA TOMOHIROBANDO YOSHIJI
    • G06T7/20G06T1/00
    • G06K9/00248
    • PROBLEM TO BE SOLVED: To provide an estimation device, for accurately performing time-series Bayes estimation in real time even in an environment with non-Gaussian noise.
      SOLUTION: A mixed distribution generation part 14 generates a particle according to a mixed distribution in which an upper prediction distribution based on an estimation result of an affine parameter showing a head posture and a lower prediction distribution based on an estimation result of a face characteristic point are mixed in a mixing ratio α
      a, t , α
      z, t , and an observation part 22 calculates the weight of the particle using observation data z
      t and a template tp
      n , whereby an estimated distribution of the position of the face characteristic point expressed by weighted particles is determined. Based on particles sampled along the estimation distribution and both the prediction distributions used for generation of the mixed distribution, a mixing ratio calculation part 20 calculates a mixing ratio determined later so as to provide a mixing distribution most approximate to the estimated distribution as a mixing ratio α
      a, t+1 , α
      z, t+1 used in the next estimation.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:为了提供一种估计装置,即使在具有非高斯噪声的环境中也能实时准确地执行时间序列贝叶斯估计。 解决方案:混合分布生成部分14根据混合分布生成粒子,其中基于表示头部姿势的仿射参数的估计结果的上部预测分布和基于a的估计结果的较低预测分布 表面特征点以混合比α a,t ,αSB> t 混合,观察部22使用观测数据z t 和模板tp n ,由此确定由加权粒子表示的面部特征点的位置的估计分布。 基于沿着估计分布采样的颗粒和用于产生混合分布的预测分布,混合比计算部20计算稍后确定的混合比,以便提供最接近估计分布的混合分布作为混合比 α a,t + 1 ,α z,t + 1 。 版权所有(C)2007,JPO&INPIT
    • 4. 发明专利
    • Super-resolution method and super-resolution program
    • 超分辨率方法和超分辨率方案
    • JP2009146231A
    • 2009-07-02
    • JP2007324086
    • 2007-12-14
    • Nara Institute Of Science & Technology国立大学法人 奈良先端科学技術大学院大学
    • MAEDA SHINICHIKANEMURA ATSUNORIISHII MAKOTO
    • G06T3/00G06T1/00G06T3/40
    • PROBLEM TO BE SOLVED: To provide a super-resolution method, capable of automatically detecting a shielding object to attain accurate super-resolution. SOLUTION: A shielding pattern is defined as a probability variable which takes a discrete value for each pixel of an observation image, and it is assumed that an observation image that does not correspond to an original image is obtained in an area where a shielding object or the like is present. A probability distribution of the probability variables expressing the shielding patterns is modeled as spin glass, and the shielding object or the like is expressed as a continuous area of an optional shape by reflecting the property of the shielding object or the like in which it is frequently connected in a spatially smooth manner. Since the presence/absence of shielding is stochastically estimated by the probability distribution expressing a certainty factor of estimation (posterior distribution of the shielding patterns when observed), estimation can be performed according to the certainty factor, and a high-resolution image can be estimated further accurately, compared with a method for deterministically identifying a shielding area. Since the estimation of the shielding patterns and the estimation of the high-resolution image have a strong dependency for the respective estimation results, these are simultaneously estimated without treating them by independent estimation methods. COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供能够自动检测屏蔽物体以获得准确的超分辨率的超分辨率方法。 解决方案:屏蔽图案被定义为对观察图像的每个像素采取离散值的概率变量,并且假设在以下区域中获得与原始图像不对应的观察图像: 屏蔽物等存在。 表示屏蔽图案的概率变量的概率分布被建模为旋转玻璃,并且屏蔽物体等通过反映其中经常被屏蔽物体等的性质而被表示为可选形状的连续区域 以空间平滑的方式连接。 由于屏蔽的存在/不存在通过表示估计的确定性因子(观察时的屏蔽图案的后验分布)的概率分布来随机估计,可以根据确定性因子进行估计,并且可以估计高分辨率图像 与用于确定性地识别屏蔽区域的方法相比,进一步精确地。 由于屏蔽图案的估计和高分辨率图像的估计对于各个估计结果具有很强的依赖性,所以它们在不用独立估计方法进行处理的同时被估计。 版权所有(C)2009,JPO&INPIT
    • 8. 发明专利
    • Time-based phenomenon occurrence analysis apparatus and time-based phenomenon occurrence analysis method
    • 基于时间的基尼系统分析装置和基于时间的基因分析方法
    • JP2006202235A
    • 2006-08-03
    • JP2005016140
    • 2005-01-24
    • Nara Institute Of Science & Technology国立大学法人 奈良先端科学技術大学院大学
    • OBA SHIGEMASAISHII MAKOTO
    • A61B5/00A61B10/00G06F19/24G06Q10/04G06Q50/00G06Q50/10G06Q50/22
    • G06F19/24G06F19/20
    • PROBLEM TO BE SOLVED: To provide a new survival time analysis apparatus and survival time analysis method that can analyze the probability of the occurrence of a predetermined phenomenon in an analysis object (single sample) at a predetermined time point by associating and analyzing feature amount data on the analysis object and the occurrence of the predetermined phenomenon. SOLUTION: The survival time analysis apparatus 100 comprises an input part 10 for inputting feature amount data acquired from an analysis object, and a probability calculation part 20 for calculating predetermined survival rates of the analysis object according to gene expression profile data input from the input part 10, and the probability calculation part 20 has a plurality of estimators 21 for respective predetermined time points. The associated analysis of the gene expression profile and survival rate of the analysis object can analyze the survival rates of the analysis object (single sample) at the predetermined time points. COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:提供一种新的生存时间分析装置和存活时间分析方法,其可以通过关联和分析在预定时间点分析在分析对象(单个样本)中发生预定现象的概率 分析对象的特征量数据和预定现象的发生。 生存时间分析装置100包括用于输入从分析对象获取的特征量数据的输入部10和用于根据从分析对象输入的基因表达谱数据计算分析对象的预定存活率的概率计算部20 输入部分10和概率计算部分20在各个预定时间点具有多个估计器21。 分析对象的基因表达谱和存活率的相关分析可以在预定时间点分析分析对象(单个样本)的存活率。 版权所有(C)2006,JPO&NCIPI
    • 9. 发明专利
    • Controller and program
    • 控制器和程序
    • JP2006085284A
    • 2006-03-30
    • JP2004267307
    • 2004-09-14
    • Nara Institute Of Science & TechnologyToyota Motor Corpトヨタ自動車株式会社国立大学法人 奈良先端科学技術大学院大学
    • ISHII MAKOTONAKAMURA YASUSHIASO KAZUAKI
    • G05B11/32G05B13/02G05B19/414G05B19/4155
    • PROBLEM TO BE SOLVED: To solve the problem of controllers of conventional technology wherein learning of control rules at high speed is difficult and require large amount of CPU power for control.
      SOLUTION: The controller includes an observing part for observing the status of a device to be controlled to obtain two or more first-class parameters; a characteristic extracting part for obtaining, based on the two or more first-class parameters obtained by the observing part, second-class parameters that exist in a smaller number than the first-class parameters; and a control part for controlling the device to be controlled on the basis of the one or more second-class parameters obtained by the characteristic extracting part. This configuration enables the controller to compress the numerous parameters observed and thus learn the control rules for the device to be controlled at high speed.
      COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:为了解决传统技术的控制器的问题,其中高速控制规则的学习是困难的,并且需要大量的CPU功率进行控制。 解决方案:控制器包括用于观察要控制的设备的状态以获得两个或更多个一级参数的观察部件; 特征提取部分,用于基于由观察部分获得的两个或多个第一类参数获得存在于比第一类参数小的数量的二等参数; 以及控制部件,用于基于由特征提取部分获得的一个或多个二次参数来控制要被控制的装置。 该配置使控制器可以压缩观察到的众多参数,从而了解要高速控制的设备的控制规则。 版权所有(C)2006,JPO&NCIPI