会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明公开
    • A rules-based occupant classification system for airbag deployment
    • Ein auf Regeln basiertes Fahrzeuginsassenklassifizierungssystem zumAuslöseneines安全气囊
    • EP1262376A1
    • 2002-12-04
    • EP02011343.7
    • 2002-05-23
    • EATON CORPORATION
    • Baloch, Aijaz AhmedUsman, AhmedAsif, MuhammadAfridi, Khuram Khan
    • B60R21/01
    • B60R21/01538B60R21/01556G06K9/00362G06K9/626G06T7/215G06T7/254
    • An occupant classification system (10) utilizes a rules-based expert system (44) to automatically classify the occupant (18) of a seat (20) for the purposes of airbag deployment. The invention provides users with the ability to create, test, and modify the image attributes or features used by the expert system (44) to classify occupants into one of several predefined occupant-type categories (48). Users are also provided the ability to create, test, and modify the processes utilizing those chosen features. The user of the invention designs the features and the algorithms used by the expert system classifier (44). A feature extractor (40) is used to extract features from an image of the occupant (18) and surrounding seat area (21), and the values (104) relating to those features are sent in a vector of features (42) to the expert system classifier (44). The expert system classifier (44) classifies the image of the occupant (18) according to the internal rules for that classifier (44). The resulting occupant-type classification (48) is sent to the confidence factor extractor (50), along with the vector of features (42). The confidence factor extractor (46) generates a confidence factor (50) indicating the probable accuracy of the occupant-type classification (48). The occupant-type classification (48) and confidence factor (50) are then sent to the airbag controller (36) so the airbag deployment system (30) can take the appropriate action. For embodiments involving multiple expert system classifiers (44), one weighted occupant-type classification (56) and one weighted confidence factor (58) are sent to the airbag controller (30).
    • 乘员分类系统利用基于规则的专家系统为了安全气囊部署的目的而自动分类座椅乘员。 本发明使用户能够创建,测试和修改由专家系统使用的图像属性或“特征”,以将乘客分类为若干预定义的乘员类型类别之一。 用户还可以使用这些选定的功能创建,测试和修改流程。 本发明的用户设计专家系统分类器使用的特征和算法。 特征提取器用于从乘员和周围座位区域的图像中提取特征,并且将与这些特征相关的值以特征向量发送到专家系统分类器。 专家系统分类器根据该分类器的内部规则对乘员的图像进行分类。 所产生的乘员类型分类与特征向量一起发送到置信因子提取器。 置信因子提取器产生表示乘员类型分类的可能精度的置信因子。 然后将乘员类型分类和置信因子发送到安全气囊控制器,使安全气囊展开系统能够采取适当的动作。 对于涉及多个专家系统分类器的实施例,将一个加权乘员类型分类和一个加权置信因子发送到安全气囊控制器。
    • 7. 发明公开
    • IMAGE BASED OBJECT CLASSIFICATION
    • BILDBASIERTE OBJEKTKLASSIFIZIERUNG
    • EP3008666A1
    • 2016-04-20
    • EP13731313.6
    • 2013-06-13
    • Sicpa Holding SA
    • HEUSCH, GuillaumePICAN, Nicolas
    • G06K9/62G06T7/00
    • G06K9/6255G06K9/46G06K9/626G06K9/6265G06K9/6269G06K9/6277G06K9/628G06K9/6285G06T7/0004G06T2207/30164
    • A method for classifying an object in image data to one out of a set of classes using a classifier, said image data comprising an image of the object, each class indicating a property common to a group of objects, the method comprising the steps of obtaining said classifier used to estimate for an input feature vector a probability for each of the set of classes, one probability indicating whether the input feature vector belongs to one class; extracting a feature vector from said image data; using the obtained classifier to estimate the probabilities for the extracted feature vector; and evaluating the estimated probabilities for determining whether the object does not belong to any one of the set of classes based using a quality indicator.
    • 一种用于使用分类器将图像数据中的对象分类为一组中的对象的方法,所述图像数据包括所述对象的图像,每个类指示一组对象的共同属性,所述方法包括以下步骤:获得 所述分类器用于为输入特征向量估计每组类别的概率,一个概率表示输入特征向量是否属于一个类; 从所述图像数据中提取特征向量; 使用获得的分类器来估计提取的特征向量的概率; 以及基于使用质量指标来评估用于确定所述对象是否不属于所述一组类别中的任何一个的估计概率。