会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明公开
    • MULTI-ELECTRODE SUBMERGED ARC WELDING METHOD, WELDED JOINT, AND METHOD FOR MANUFACTURING SAME
    • 多电极埋弧焊接方法,焊接接头及制造该方法的方法
    • EP3308895A1
    • 2018-04-18
    • EP16807126.4
    • 2016-06-08
    • JFE Steel Corporation
    • KOZUKI, ShoheiHAYAKAWA, NaoyaOI, Kenji
    • B23K9/18
    • B23K9/18B23K9/095B23K9/184B23K9/188
    • A multi-electrode submerged arc welding method using a plurality of electrodes is provided. For each of a second electrode to an nth electrode except a first electrode that is a front electrode in a welding direction where n is an integer of 2 or more: a welding power supply capable of controlling a waveform of a welding current is used; and when a maximum value of an electromagnetic force F i acting on an arc column at a wire tip of an ith electrode during welding is denoted by F imax in N/m, an average value of the electromagnetic force F i is denoted by F iave in N/m, and a standard deviation of the electromagnetic force F i is denoted by σ Fi in N/m, welding is performed so that F imax, F iave , and σ Fi satisfy relationships in Expressions (1) and (2).
    • 提供了使用多个电极的多电极埋弧焊接方法。 对于n为2以上的整数的焊接方向的前电极即第一电极以外的第二电极〜第n电极分别使用能够控制焊接电流的波形的焊接电源, 当作用于焊接时的第i个电极的焊丝前端的电弧柱的电磁力Fi的最大值以N / m的Fimax表示时,将电磁力Fi的平均值表示为N / m的Fiave ,电磁力Fi的标准偏差用N / m的σFi表示时,进行焊接以使Fimax,Fiave和σFi满足式(1)和式(2)的关系。
    • 8. 发明公开
    • ELECTRIC MELTING METHOD FOR FORMING METAL STRUCTURE
    • 电熔法形成金属结构
    • EP3213863A1
    • 2017-09-06
    • EP15856920.2
    • 2015-11-03
    • Nanfang Additive Manufacturing Technology Co., Ltd
    • WANG, Huaming
    • B23K28/02B23K9/04B23K11/00B23K25/00
    • B29C70/82B05C19/04B22F3/1055B22F2202/06B22F2999/00B23K9/04B23K9/18B23K25/005B28B1/001B29C64/153B29C64/282B29C64/295B33Y10/00B33Y30/00H05K3/103B22F2003/1056
    • An electric melting method for forming metal components. The method provides an electric melting head (6) and a base material (2) being connected to the anode and the cathode of a power supply (12). During the forming of the component, the raw metal wire (1) is sent to the base material (2) via the feeder (5) and the electric melting head (6) to generate electric arc (9) between the raw wire (1) and the base material (2) under the protection of the deposition of granular auxiliary material (3). The electric arc melts a part of the deposited auxiliary material (3) and creates a molten slag pool (8). Electric current flows through the raw wire (1) and the molten slag pool (8), and generates the resistance heat and the electroslag heat. The raw wire (1) is molten under the high-energy heat resource composed of the electric arc heat, the resistance heat and the electroslag heat, and thereby creating a molten pool (11) on partial surface of the base material (2). The raw wire (1) and the auxiliary material (3) are fed continuously and a computer is employed to control the relative movement of the electric melting head (6) and the base material (2) based on laminated slicing data, such that the molten pool (11) is rapidly cooled, solidified and deposited on the base material (2), and thus the metal component with desired shape and size are formed after the layer-to-layer deposition.
    • 一种用于形成金属部件的电熔法。 该方法提供了电熔头(6)和连接到电源(12)的阳极和阴极的基材(2)。 在形成部件时,原料金属丝(1)经由供料器(5)和电熔融头(6)被送到基材(2),以在原料丝(1) )和基体材料(2)在颗粒辅助材料(3)的沉积的保护下进行。 电弧熔化一部分沉积的辅助材料(3)并形成熔渣池(8)。 电流流经原丝(1)和熔渣池(8),产生电阻热和电渣热。 原丝(1)在由电弧热,电阻热和电渣热组成的高能热源下熔融,从而在基材(2)的部分表面上形成熔池(11)。 连续输送原丝(1)和辅助材料(3),并采用计算机根据层压切片数据控制电熔头(6)和基材(2)的相对运动,使得 熔池(11)迅速冷却,凝固并沉积在基材(2)上,从而在层与层沉积之后形成具有所需形状和尺寸的金属部件。