会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • METHOD FOR MANUFACTURING BONDED WAFER
    • 制造结合晶片的方法
    • EP2426697A1
    • 2012-03-07
    • EP10769820.1
    • 2010-04-30
    • Shin-Etsu Chemical Co., Ltd.
    • KAWAI, MakotoTOBISAKA, YujiAKIYAMA, Shoji
    • H01L21/02H01L21/265H01L27/12
    • H01L21/76254H01L21/67109
    • Disclosed is a method for performing peeling without generating breakage of a substrate in the case where the thermal expansion coefficient of a handle substrate is higher than that of a donor substrate. A method for manufacturing a bonded wafer at least includes: a step of forming an ion-implanted interface (5) by implanting ions from the surface of a donor substrate (3); a step of making a bonded substrate by bonding a handle substrate (7), which has a thermal expansion coefficient higher than that of the donor substrate (3), on the donor substrate (3) surface having the ions implanted therein; a step of obtaining a bonded body (1) by performing heat treatment to the bonded substrate; a peeling step wherein the bonded body (1) is cooled to a temperature below the room temperature by means of a cooling apparatus (20), the donor substrate (3) of the bonded body (1) is peeled from the ion-implanted interface, and a donor thin film is transferred onto the handle substrate (7).
    • 公开了一种在处理基板的热膨胀系数高于供体基板的热膨胀系数的情况下执行剥离而不产生基板破损的方法。 一种制造键合晶片的方法至少包括:通过从供体衬底(3)的表面注入离子来形成离子注入界面(5)的步骤; 通过在其中注入有离子的供体衬底(3)表面上结合热膨胀系数高于供体衬底(3)的处理衬底(7)来制造键合衬底的步骤; 通过对粘合基板进行热处理得到粘合体(1)的步骤; 剥离步骤,其中通过冷却装置(20)将结合体(1)冷却至低于室温的温度,结合体(1)的供体基板(3)从离子注入界面 并且将供体薄膜转移到处理基板(7)上。
    • 2. 发明公开
    • METHOD FOR MANUFACTURING BONDED SUBSTRATE
    • HERSTELLUNGSVERFAHRENFÜRGEBUNDENES SUBSTRAT
    • EP2270839A1
    • 2011-01-05
    • EP09730414.1
    • 2009-04-10
    • Shin-Etsu Chemical Co., Ltd.
    • TOBISAKA, YujiKUBOTA, YoshihiroITO, AtsuoTANAKA, KouichiKAWAI, MakotoAKIYAMA, ShojiTAMURA, Hiroshi
    • H01L21/02H01L27/12
    • H01L21/187H01L21/76254
    • Provided is a method for manufacturing a bonded substrate having an excellent thin film over the entire substrate surface, especially even at the vicinity of a bonded end portion. The method for manufacturing the bonded substrate wherein the thin film is provided on a second substrate has at least a step of forming an ion implanted layer by implanting from a surface of a first substrate, i.e., a semiconductor substrate, hydrogen ions or rare gas ions or both types of ions; a step of performing surface activation treatment to at least the first substrate surface wherein ions are implanted or to the bonding surface of the second substrate; a step of bonding the first substrate surface wherein the ions are implanted and the bonding surface of the second substrate with each other, under atmosphere having a humidity of 30% or less and/or a water quantity of 6g/m 3 or less; and a peeling step of separating the first substrate at the ion implanted layer and forming the first substrate in a thin film state.
    • 提供一种在整个基板表面上,特别是甚至在接合端部附近制造具有优异薄膜的接合基板的方法。 用于制造键合衬底的方法,其中薄膜设置在第二衬底上具有至少一个步骤:通过从第一衬底(即,半导体衬底,氢离子或稀有气体离子)的表面注入形成离子注入层 或两种类型的离子; 至少对其中注入有离子的第一衬底表面或第二衬底的结合表面进行表面活化处理的步骤; 在湿度为30%以下和/或6g / m 3以下的气氛下,将其中注入离子的第一衬底表面和第二衬底的结合表面彼此接合的步骤; 以及剥离步骤,在离子注入层处分离第一衬底并以薄膜状态形成第一衬底。
    • 3. 发明公开
    • METHOD FOR MANUFACTURING SUBSTRATE FOR PHOTOELECTRIC CONVERSION ELEMENT
    • HERSTELLUNGSVERFAHRENFÜREIN SUBSTRE EINES FOTOELEKTRISCHEN KONVERSIONSELEMENTS
    • EP1995788A1
    • 2008-11-26
    • EP07738265.3
    • 2007-03-12
    • Shin-Etsu Chemical Co., Ltd.
    • AKIYAMA, ShojiKUBOTA, YoshihiroITO, AtsuoKAWAI, MakotoTOBISAKA, YuujiTANAKA, Koichi
    • H01L31/04H01L21/02H01L21/20H01L21/205
    • H01L21/76254H01L31/0687H01L31/1804H01L31/1892Y02E10/544Y02E10/547Y02P70/521
    • A silicon layer (10B) having a conductivity type opposite to that of a bulk is provided on the surface of a silicon substrate (100) and hydrogen ions are implanted to a predetermined depth (L) into the surface region of the silicon substrate (100) through the silicon layer (10B) to form a hydrogen ion-implanted layer (11). Then, an n-type germanium-based crystal layer (20A) whose conductivity type is opposite to that of the silicon layer (10B) and a p-type germanium-based crystal layer (20B) whose conductivity type is opposite to that of the germanium-based crystal layer (20A) are successively vapor-phase grown to provide a germanium-based crystal (20). The surface of the germanium-based crystal layer (20B) and the surface of the supporting substrate (30) are bonded together. In this state, impact is applied externally to separate a silicon crystal (10) from the silicon substrate (100) along the hydrogen ion-implanted layer (11), thereby transferring (peeling off) a laminated structure composed of the germanium-based crystal (20) and the silicon crystal (10) onto the supporting substrate (30).
    • 在硅衬底(100)的表面上设置具有与本体相反的导电类型的硅层(10B),并将氢离子注入预定深度(L)到硅衬底(100)的表面区域 )通过硅层(10B)形成氢离子注入层(11)。 然后,其导电类型与硅层(10B)的导电类型相反的n型锗基晶体层(20A)和与导电类型相反的p型锗基晶体层(20B) 锗基晶体层(20A)依次气相生长以提供锗基晶体(20)。 锗基晶体层(20B)的表面和支撑基板(30)的表面结合在一起。 在这种状态下,外部施加冲击以沿着氢离子注入层(11)从硅衬底(100)分离硅晶体(10),从而转移(剥离)由锗基晶体 (20)和硅晶体(10)到支撑衬底(30)上。
    • 4. 发明公开
    • METHOD FOR PRODUCING COMPOSITE WAFER PROVIDED WITH OXIDE SINGLE-CRYSTAL THIN FILM
    • 生产提供有氧化物单晶薄膜的复合晶片的方法
    • EP3306643A1
    • 2018-04-11
    • EP16803410.6
    • 2016-06-01
    • Shin-Etsu Chemical Co., Ltd.
    • AKIYAMA, ShojiKAWAI, Makoto
    • H01L21/02H01L21/265H01L21/425H01L27/12H01L41/187H01L41/312
    • H01L41/312H01L21/02H01L21/265H01L21/425H01L21/76254H01L27/12H01L41/187
    • Provided is a composite wafer having an oxide single-crystal film transferred onto a support wafer, the film being a lithium tantalate or lithium niobate film, and the composite wafer being unlikely to have cracking or peeling caused in the lamination interface between the film and the support wafer. More specifically, provided is a method of producing the composite wafer, including steps of: implanting hydrogen atom ions or molecule ions from a surface of the oxide wafer to form an ion-implanted layer inside thereof; subjecting at least one of the surface of the oxide wafer and a surface of the support wafer to surface activation treatment; bonding the surfaces together to obtain a laminate; heat-treating the laminate at 90°C or higher at which cracking is not caused; and applying a mechanical impact to the ion-implanted layer of the heat-treated laminate to split along the ion-implanted layer to obtain the composite wafer.
    • 本发明提供一种在支撑晶片上转印有氧化物单晶膜的复合晶片,所述膜为钽酸锂或铌酸锂膜,并且所述复合晶片不易在所述膜与所述膜之间的层压界面处产生裂纹或剥离 支持晶圆。 更具体而言,提供一种制造复合晶片的方法,包括以下步骤:从氧化物晶片的表面注入氢原子离子或分子离子以在其内部形成离子注入层; 对氧化物晶片的表面和支撑晶片的表面中的至少一个进行表面活化处理; 将表面粘合在一起以获得层压体; 在90℃或更高的温度下对层压体进行热处理,在该温度下不会产生裂纹; 对该热处理层叠体的离子注入层施加机械冲击,沿离子注入层分离,得到复合晶片。
    • 8. 发明公开
    • SOS SUBSTRATE HAVING LOW DEFECT DENSITY IN THE VICINITY OF INTERFACE
    • VERFAHREN ZUM HERSTELLEN EINES SOS-SUBSTRAT MIT GERINGEROBERFLÄCHENDEFEKTDICHTEINSCHNITTSTELLENNÄHE
    • EP2437282A1
    • 2012-04-04
    • EP10780543.4
    • 2010-05-25
    • Shin-Etsu Chemical Co., Ltd.
    • AKIYAMA, ShojiITO, AtsuoTOBISAKA, YujiKAWAI, Makoto
    • H01L21/02H01L21/265H01L27/12
    • H01L21/76254H01L21/268
    • The problem of a defect density increase due to lattice constant mismatch between silicon and sapphire is solved, and an SOS substrate having a low surface detect density even in an extremely thin silicon film is provided. The bonded SOS substrate (8) has a semiconductor thin film (4) provided on the surface of a sapphire substrate (3). The bonded SOS substrate is obtained by means of: a step wherein the sapphire substrate (3) and a semiconductor substrate (1) are provided; a step wherein an ion implanted layer (2) is formed by implanting ions from the surface of the semiconductor substrate (1); a step wherein surface activation treatment is performed to said surface of the sapphire substrate (3) and/or the semiconductor substrate (1) surface having the ions implanted therein; a step wherein the semiconductor substrate (1) surface and the sapphire substrate (3) surface are bonded at 50-350°C; and a step wherein a bonded body (6) is obtained by performing heat treatment at a highest temperature of 200-350°C to the bonded substrate; and a step wherein the bonded body (6) is disposed at a temperature higher than the bonding temperature, visible light is applied toward the ion implanted layer (2) of the semiconductor substrate (1) from the sapphire substrate (3) side or the semiconductor substrate (1) side, the interface of the ion implanted layer (2) is made brittle, and the semiconductor thin film (4) is transferred.
    • 解决了由于硅和蓝宝石之间的晶格常数失配导致的缺陷密度增加的问题,并且提供了即使在非常薄的硅膜中也具有低表面检测密度的SOS衬底。 粘合SOS基板(8)具有设置在蓝宝石基板(3)的表面上的半导体薄膜(4)。 通过以下步骤获得粘合的SOS衬底:其中提供蓝宝石衬底(3)和半导体衬底(1)的步骤; 通过从半导体衬底(1)的表面注入离子形成离子注入层(2)的步骤; 对蓝宝石衬底(3)和/或具有离子注入的半导体衬底(1)表面的表面进行表面活化处理的步骤; 其中半导体衬底(1)表面和蓝宝石衬底(3)表面在50-350℃下接合的步骤; 以及通过在200-350℃的最高温度下对所述键合衬底进行热处理而获得粘合体(6)的步骤; 以及将接合体(6)配置在高于接合温度的温度的步骤,从蓝宝石衬底(3)侧向半导体衬底(1)的离子注入层(2)施加可见光,或者 半导体衬底(1)侧,离子注入层(2)的界面变脆,半导体薄膜(4)被转印。
    • 10. 发明公开
    • METHOD FOR MANUFACTURING SOI SUBSTRATE
    • 制造SOI衬底的方法
    • EP1983553A1
    • 2008-10-22
    • EP07713948.3
    • 2007-02-08
    • Shin-Etsu Chemical Co., Ltd.
    • AKIYAMA, ShojiKUBOTA, YoshihiroITO, AtsuoKAWAI, MakotoTOBISAKA, YuujiTANAKA, Koichi
    • H01L21/02H01L21/762H01L27/12
    • H01L21/76254H01L21/2007H01L27/1203H01L27/1214H01L29/78603
    • A heating plate (32) having a smooth surface is placed on a hot plate (31) which constitutes a heating section, and the smooth surface of the heating plate (32) is closely adhered on the rear surface of a single-crystal Si substrate (10) bonded to a transparent insulating substrate (20). The temperature of the heating plate (32) is kept at 200°C or higher but not higher than 350°C. When the rear surface of the single-crystal Si substrate (10) bonded to the insulating substrate (20) is closely adhered on the heating plate (32), the single-crystal Si substrate (10) is heated by thermal conduction, and a temperature difference is generated between the single-crystal Si substrate and the transparent insulating substrate (20). A large stress is generated between the both substrates due to rapid expansion of the single-crystal Si substrate (10), thus separation takes place at a hydrogen ion-implanted interface.
    • 将具有平滑表面的加热板(32)放置在构成加热部分的加热板(31)上,并且加热板(32)的光滑表面紧密地粘附在单晶Si衬底的后表面上 (10)结合到透明绝缘基板(20)。 加热板(32)的温度保持在200℃或更高但不高于350℃。 当与绝缘基板(20)接合的单晶硅基板(10)的背面紧贴在加热板(32)上时,单晶硅基板(10)通过热传导被加热, 在单晶硅衬底和透明绝缘衬底(20)之间产生温差。 由于单晶硅衬底(10)的快速膨胀,两衬底之间产生大的应力,因此在氢离子注入界面处发生分离。