会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • VERFAHREN ZUR HERSTELLUNG VON 1,3-BUTADIEN DURCH DEHYDRIERUNG VON N-BUTENEN UNTER BEREITSTELLUNG EINES BUTANE UND 2-BUTENE ENTHALTENDEN STOFFSTROMES
    • EP3218334A1
    • 2017-09-20
    • EP15790976.3
    • 2015-11-09
    • BASF SELinde Aktiengesellschaft
    • UNGELENK, JanGRÜNE, PhilippWALSDORFF, ChristianJOSCH, Jan PabloBENDER, Michael
    • C07C4/06C07C5/48C07C7/08C07C7/09C07C7/11C07C7/148C07C11/167C07C11/08
    • C07C5/48C07C2/10C07C2/62C07C6/04C07C7/08C07C7/11C07C2521/04C07C2523/18C07C2523/28C07C2523/30C07C2523/36C07C2523/755C07C2527/043C07C2527/1206C07C2527/126C07C11/167C07C11/08C07C9/10C07C9/21C07C11/06C07C11/02
    • The invention relates to a method for producing 1,3-butadiene from n-butenes, comprising the following steps: A) providing a feed gas flow a, containing butanes, 1-butene, 2-butene, isobutene, and possibly 1,3-butadiene, from a fluid catalytic cracking plant; B) separating isobutene from the feed gas flow a, wherein a material flow b, containing butanes, 1-butene, 2-butene, and possibly 1,3-butadiene, is obtained; C) feeding the material flow b, containing butanes, 1-butene, and 2-butene, possibly a gas containing oxygen, and possibly water vapor into at least one dehydrogenation zone and dehydrogenating 1-butene and 2-butene into 1,3-butadiene, wherein a product gas flow c, containing 1,3-butadiene, butanes, 2-butene, water vapor, possibly oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides, and possibly inert gases, is obtained; D) cooling and compressing the product gas flow c, wherein at least an aqueous condensate flow d1 and a gas flow d2, containing 1,3-butadiene, butanes, 2-butene, water vapor, possibly oxygen, low-boiling hydrocarbons, possibly carbon oxides, and possibly inert gases, are obtained; Ea) separating non-condensable and low-boiling gas constituents, comprising low-boiling hydrocarbons, possibly oxygen, possibly carbon oxides, and possibly inert gases, as a gas flow e2 from the gas flow d2 by absorbing the C4 hydrocarbons, comprising 1,3-butadiene, butanes, and 2-butene, in an absorbent, wherein an absorbent flow loaded with C4 hydrocarbons and the gas flow e2 are obtained, and Eb) subsequently desorbing the C4 hydrocarbons from the loaded absorbent flow, wherein a C4 hydrocarbon flow e1 is obtained; F) separating the C4 hydrocarbon flow e1 by extractive distillation by means of a solvent selective for 1,3-butadiene into a material flow f1, containing 1,3-butadiene and the solvent, and a material flow f2, containing butanes and 2-butene, characterized in that at least 90% of the 1-butene contained in flow b is converted in step C) and a product flow f2 containing butanes and 2-butene is obtained in step F.
    • 本发明涉及由正丁烯生产1,3-丁二烯的方法,其包括以下步骤:A)提供包含丁烷,1-丁烯,2-丁烯,异丁烯和可能的1,3-丁二烯的进料气流a; 来自流化催化裂化装置的丁二烯; B)从原料气流a分离异丁烯,其中获得含有丁烷,1-丁烯,2-丁烯和可能的1,3-丁二烯的物料流b; C)将含丁烷,1-丁烯和2-丁烯的材料流b,可能含有氧气的气体和可能的水蒸汽送入至少一个脱氢区,并将1-丁烯和2-丁烯脱氢成1,3-丁二烯, 丁二烯,其中获得包含1,3-丁二烯,丁烷,2-丁烯,水蒸气,可能的氧气,低沸点烃,高沸点次要组分,可能的碳氧化物和可能的惰性气体的产物气流c ; D)冷却并压缩产物气流c,其中至少含有可能含有1,3-丁二烯,丁烷,2-丁烯,水蒸汽,可能的氧,低沸点烃的含水冷凝物流d1和气流d2 碳氧化物和可能的惰性气体; Ea)将包含低沸点烃,可能氧,可能碳氧化物和可能的惰性气体的不可冷凝和低沸点气体成分作为来自气流d2的气体流e2通过吸收包含1, 3-丁二烯,丁烷和2-丁烯,在吸收剂中获得负载有C 4烃和气流e 2的吸收剂流,并且E b)随后从负载的吸收剂流中解吸C 4烃,其中C 4烃流 e1被获得; F)通过萃取蒸馏借助于对1,3-丁二烯选择性的溶剂将C4烃流e1分离成包含1,3-丁二烯和溶剂的物料流f1和包含丁烷和2-丁烯的物料流f2, 其特征在于流程b中包含的1-丁烯的至少90%在步骤C)中转化并且在步骤F中获得包含丁烷和2-丁烯的产物流f2。
    • 6. 发明授权
    • PROCESS FOR PREPARING 1,3-BUTADIENE FROM N-BUTENES BY OXIDATIVE DEHYDROGENATION
    • EP3215478B1
    • 2018-08-29
    • EP15788406.5
    • 2015-11-02
    • BASF SELinde AG
    • GRÜNE, PhilippDEUBLEIN, StephanWALSDORFF, ChristianJOSCH, Jan PabloRAHM, RainerREYNEKE, HendrikWELLENHOFER, AntonWENNING, UlrikeTOEGEL, ChristineBOELT, Heinz
    • C07C5/48C07C7/04C07C7/08C07C7/11C07C11/167
    • C07C5/48C07C7/005C07C7/04C07C7/08C07C7/11C07C11/167C07C2523/31C07C2523/843C07C2523/847
    • The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes; B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a circulating cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase comprising an organic solvent; Cb) compressing the cooled product gas stream b which may have been depleted of high-boiling secondary components in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases;D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4 product stream d1 by extractive distillation with a butadiene- selective solvent into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distilling the stream e1 comprising butadiene and the selective solvent into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene; which comprises G) removing a portion of the aqueous phase of the cooling medium which circulates in step Ca) and has an aqueous phase and an organic phase as aqueous purge stream g; H) distillatively separating the aqueous purge stream g into a fraction h1 enriched in organic constituents and a fraction h2 depleted of organic constituents.
    • 8. 发明公开
    • VERFAHREN ZUR OXIDATIVEN DEHYDRIERUNG VON N-BUTENEN ZU 1,3-BUTADIEN
    • EP3010635A1
    • 2016-04-27
    • EP14730527.0
    • 2014-06-16
    • BASF SE
    • OLBERT, GerhardAVERLANT, Gauthier Luc MauriceGRÜNE, PhilippJOSCH, Jan Pablo
    • B01J8/06C07C5/48C07C11/167
    • C07C5/48B01J8/0496B01J8/065B01J8/067B01J19/249B01J23/28B01J23/92B01J38/02B01J2208/00053B01J2208/00061B01J2208/00115B01J2208/00176B01J2208/00212B01J2208/00221B01J2208/00407B01J2208/0053B01J2208/065B01J2219/2462B01J2219/2467B01J2219/2481C07C2523/18C07C2523/26C07C2523/28C07C2523/34C07C2523/745C07C2523/75C07C2523/755Y02P20/584C07C11/167
    • The invention relates to a method for producing 1,3 butadien by means of the oxidative dehydration of n-butenes on a heterogenous particulate multimetal oxide catalyst which contains molybdenum as the active compound and at least one other metal and which is filled into the contact tubes (KR) of two or more tube bundle reactors (R-I, R-II), wherein a heat transfer medium flows around the intermediate space between the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II). The method includes a production mode and a regeneration mode which are carried out in an alternating manner. In the production mode, an n-butene-containing feed flow is mixed with an oxygen-containing gas flow and conducted as a supply flow (1) over the heterogenous particulate multimetal oxide catalyst filled into the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II), and the heat transfer medium absorbs the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, by means of an indirect heat exchange and completely or partly dispenses the reaction heat onto a secondary heat transfer medium (H
      2 O
      liq ) in an external cooler (SBK). In the regeneration mode, the heterogenous particulate multimetal oxide catalyst is regenerated by conducting an oxygen-containing gas mixture (3) over the catalyst and burning off the deposits accumulated on the heterogenous particulate multimetal oxide catalyst. The invention is characterized in that the two or more tube bundle reactors (R-I, R-II) have a single heat transfer medium circuit and as many of the two or more tube bundle reactors (R-I. R-II) as necessary are operated constantly in the production mode so that the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, suffices to keep the temperature of the heat transfer medium in the intermediate spaces between the content tubes (KR) of all the tube bundle reactors (R-I, R-II) at a constant level with a variation range of maximally +/- 10 °C.
    • 本发明涉及一种通过正丁烯在含有钼作为活性化合物和至少一种其他金属的多相颗粒多金属氧化物催化剂上的氧化脱水来制备1,3-丁二烯的方法,该催化剂填充到接触管 (RI,R-II)的接触管(KR)之间的中间空间周围流动的两个或更多个管束反应器(RI,R-II) 。 该方法包括以交替方式执行的生产模式和再生模式。 在生产模式中,将含正丁烯的进料流与含氧气流混合,并作为供应流(1)在填充到两者的接触管(KR)中的异质颗粒多金属氧化物催化剂上传导,或者 更多的管束反应器(RI,R-II),并且传热介质吸收释放的反应热,减去用于将供给流(1)加热到生产模式中的反应温度的热量,通过间接 热交换并将反应热完全或部分分配到外部冷却器(SBK)中的第二传热介质(H 2 Oliq)上。 在再生模式中,通过在催化剂上引导含氧气体混合物(3)并烧掉聚集在异相颗粒多金属氧化物催化剂上的沉积物来再生异相颗粒多金属氧化物催化剂。 本发明的特征在于,两个或更多个管束反应器(RI,R-II)具有单个传热介质回路,并且根据需要使两个或更多个管束反应器(RI.R-II)中的许多管束反应器 在生产模式下,释放的反应热减去用于将供应流(1)加热到生产模式下的反应温度的热量,足以将传热介质的温度保持在中间空间中的含量 所有管束反应器(RI,R-II)的管(KR)处于恒定水平,变化范围最大为+/- 10°C。
    • 9. 发明公开
    • VERFAHREN ZUR HERSTELLUNG VON BUTADIEN DURCH OXIDATIVE DEHYDRIERUNG VON N-BUTENEN MIT ÜBERWACHUNG DES PEROXID-GEHALTS BEI DER PRODUKTAUFARBEITUNG
    • PROCESS FOR与过氧化-含量的产品加工监测产生丁二烯通过正丁烯的氧化脱氢
    • EP2945921A1
    • 2015-11-25
    • EP14700462.6
    • 2014-01-13
    • BASF SE
    • JOSCH, Jan PabloGRÜNE, PhilippWALSDORFF, Christian
    • C07C5/48C07C7/11C07C11/167
    • C07C5/48C07C7/08C07C7/11C07C2521/02C07C2521/06C07C2523/04C07C2523/26C07C2523/34C07C2523/887C07C11/167
    • The invention relates to a method for producing butadiene from n-butenens, comprising the following steps: A) a feed gas flow (a) containing n-butenes is provided; B) the feed gas flow (a) containing n-butenes and an oxygen-containing gas is fed to at least one dehydrogenation area and is oxidatively dehydrogenated from n-butenes to form butadiene; a product gas flow (b) containing butadiene, unreacted n-butenes, water vapour, oxygen, low-boiling point hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; C) the product gas flow (b) is cooled and compressed in at least one cooling step and at least one compression step, said product gas flow (b) being brought into contact with a coolant supplied in the circuit; at least one condensate flow (c1) containing water and a gas flow (c2) containing butadiene, n-butenes, water vapour, oxygen, low-boiling point hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; D) non-condensable and low-boiling point gas component parts containing oxygen, low-boiling point hydrocarbons, optionally carbon oxides and optionally inert gases are separated from the gas flow (c2) by absorbing C
      4 -hydrocarbons containing the butadiene and n-butenes in absorption means supplied in the circuit; an absorption agent flow charged with C
      4 -hydrocarbons and the gas flow (d2) are obtained, and subsequently the C
      4 -hydrocarbon is desorbed from the charged absorption agent flow; a C
      4 -product gas flow is obtained; E) the C
      4 -product flow (d1) is separated by extractive distillation using a selected solvent for butadiene in a butadiene and the material flow (e1) containing the selective solvent and a material flow (e2) containing n-butenes; F) the butadiene and the material flow (e1) containing the selective solvent is distilled in a material flow (f1) consisting essentially of the selective solvent and a material flow (f2) containing a butadiene; wherein the samples are taken in step C) from the coolant supplied in the circuit and samples are taken in step D) from absorption means supplied in the circuit, the peroxide content being determined in the taken samples using iodometry, differential scanning calorimerty (DSC) or micro calorimerty.
    • 本发明涉及一种用于从正butenens生产丁二烯,包括以下步骤:A)(a)含有正丁烯,提供了一种进料气体流; B)将进料气体流(a)含有正丁烯和含氧气体被供给到至少一个脱氢区,并从氧化正丁烯脱氢以形成丁二烯; 的产物气体流(b)含有丁二烯,未反应的正丁烯,水蒸汽,氧,低沸点烃,其任选碳氧化物和惰性气体任选地获得; C)的产物气流(B)被冷却,并且在至少一个冷却步骤与至少一个压缩步骤,所述产物气流(B)压缩被带入与电路供应的冷却剂接触; 至少一个冷凝液流(C1)含有水和一气体流(C2)含丁二烯,正丁烯,水蒸汽,氧,低沸点烃,其任选碳氧化物和惰性气体任选地获得; 含有氧,低沸点烃,任选的碳的氧化物和任选的惰性气体D)非冷凝性和低沸点气体成分部分从气流(C2)通过吸收C4烃含丁二烯和正丁烯分离 在吸收装置中的电路提供; 吸收剂流装入C4烃和气体流(D2)获得,并随后将C4烃选自带电吸收剂流解吸; 的C4产物气流中获得; E)的C4产品流(D1)是通过使用溶剂中,在丁二烯和材料流(E1)包含选择性溶剂和材料流(E2)​​包含正丁烯选择用于丁二烯萃取蒸馏分离; F)的丁二烯和含有选择性溶剂料流(E1)蒸馏在材料流(F1)基本上由所述选择性溶剂和材料流(F2)含有丁二烯的; worin将样品从电路供给的冷却剂从吸收采取在步骤C)和取出样品,在步骤D)装置提供在所述电路中,过氧化物的含量使用碘量法是确定性的开采的取样中,差示扫描calorimerty(DSC) 或微calorimerty。