会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Polarization beam splitter for photolithography
    • 用于光刻的偏振分束器
    • US06680794B2
    • 2004-01-20
    • US10264318
    • 2002-10-04
    • James A. McClayRonald A. WilklowMatthew Gregoire
    • James A. McClayRonald A. WilklowMatthew Gregoire
    • G02B528
    • G03F7/70216G02B1/02G02B5/3033G02B5/3066G02B27/283
    • The present invention provides a photolithography system having a catadioptric system with a polarizing beam splitter cube. The beam splitter cube transmits light at wavelengths equal to or less than 170 nm. The polarizing beam splitter cube can image at high quality light incident over a wide range of angles and including a numeric aperture greater than 0.6. In one embodiment, the polarizing beam splitter cube comprises a pair of prisms that are made of at least a fluoride material, such as calcium fluoride, and a coating interface having at least one layer of a thin film fluoride material. Layers in a multi-layer stack can also be graded across the hypotenuse face of a prism to adjust layer thicknesses at any point so as to compensate for changes in the incidence angle of the light. In one embodiment, the prisms and coating interface are joined by optical contact.
    • 本发明提供了一种具有偏光分束器立方体的反射折射系统的光刻系统。 分束器立方体透射波长等于或小于170nm的光。 偏振分束器立方体可以在宽范围的角度入射的高质量光下成像,并且包括大于0.6的数值孔径。 在一个实施例中,偏振分束器立方体包括由至少氟化物材料如氟化钙制成的一对棱镜和具有至少一层薄膜氟化物材料的涂层界面。 多层叠层中的层也可以跨越棱镜的斜边分级,以调整任何点的层厚度,以补偿光入射角的变化。 在一个实施例中,棱镜和涂层界面通过光学接触连接。
    • 9. 发明授权
    • High rate ion beam sputtering process
    • 高速离子束溅射工艺
    • US5429732A
    • 1995-07-04
    • US197643
    • 1994-02-14
    • Sandeep DaveRonald A. Wilklow
    • Sandeep DaveRonald A. Wilklow
    • C23C14/46H01J37/34C23C14/34
    • H01J37/3411C23C14/46H01J37/34
    • An ion beam sputtering process for fabricating a multilayer optical coating. The process adds energy to surface atoms of a sputtering target to increase deposition rates of atoms comprising the optical coating, thereby improving yield. The present process comprises providing a sputtering chamber. A sputtering target having a predetermined binding energy is disposed in the sputtering chamber, along with an optical element onto which a multilayer optical coating is to be deposited. The sputtering chamber is then pressurized to a predetermined sputtering pressure. Energy is then applied to the sputtering target to increase the vibrational energy of surface atoms and mean target energy thereof, thereby decreasing the amount of energy required to sputter atoms from the surface of the sputtering target onto the surface of the optical element. Energy may be added to the surface atoms of the sputtering target by adding acoustic (ultrasonic) energy, by irradiating the surface of the target using a laser, or by causing lattice strain in the target.
    • 一种用于制造多层光学涂层的离子束溅射工艺。 该方法将能量添加到溅射靶的表面原子,以增加包含光学涂层的原子的沉积速率,从而提高产率。 本方法包括提供溅射室。 具有预定结合能的溅射靶与散射多层光学涂层的光学元件一起设置在溅射室中。 然后将溅射室加压至预定的溅射压力。 然后将能量施加到溅射靶,以增加表面原子的振动能量和平均目标能量,从而减少从溅射靶的表面将原子溅射到光学元件的表面上所需的能量。 可以通过使用激光照射靶的表面或通过在靶中引起晶格应变,通过添加声学(超声波)能量,将溅射靶的表面原子加入能量。
    • 10. 发明授权
    • EUV reticle substrates with high thermal conductivity
    • 具有高导热性的EUV掩模版基板
    • US08736810B2
    • 2014-05-27
    • US13054008
    • 2009-07-29
    • Ronald A. WilklowMichael L. NelsonMichael Perry
    • Ronald A. WilklowMichael L. NelsonMichael Perry
    • G03B27/42G03F1/00
    • G03F1/24B82Y10/00B82Y40/00G03F7/70891
    • A reflective reticle substantially reduces or eliminates pattern distortion that results from the absorption of EUV radiation while maintaining a reticle thickness consistent with industry standards. The reflective reticle includes a layer of ultra-low expansion (ULE) glass and a substrate of Cordierite having a thermal conductivity substantially larger than that of ULE glass. An aluminum layer is disposed onto a first surface of the ULE glass and a second surface of the ULE glass is polished to be substantially flat and defect-free. The Cordierite substrate can be directly bonded to the aluminum layer using anodic bonding to form the reflective reticle. Alternatively, a first surface of an intermediate Zerodur layer can be bonded to the aluminum layer, and a second aluminum layer can be used to anodically bond the Cordierite substrate to a second surface of the Zerodur layer, thereby forming the reflective reticle.
    • 反射型掩模版基本上减少或消除由于EUV辐射的吸收而导致的图案变形,同时保持与行业标准一致的光罩厚度。 反射型掩模版包括一层超低膨胀(ULE)玻璃和堇青石的基底,其导热率基本上大于ULE玻璃的热导率。 将铝层设置在ULE玻璃的第一表面上,并将ULE玻璃的第二表面抛光成基本平坦且无缺陷。 堇青石基材可以使用阳极结合直接结合到铝层上以形成反射型掩模版。 或者,中间Zerodur层的第一表面可以结合到铝层,并且可以使用第二铝层将堇青石基板阳极结合到Zerodur层的第二表面,从而形成反射掩模版。