会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Structured anode X-ray source for X-ray microscopy
    • 用于X射线显微镜的结构阳极X射线源
    • US07443953B1
    • 2008-10-28
    • US11609266
    • 2006-12-11
    • Wenbing YunFrederick W. DuewerMichael FeserAndrei TkachukSrivatsan Seshadri
    • Wenbing YunFrederick W. DuewerMichael FeserAndrei TkachukSrivatsan Seshadri
    • G21K5/04
    • G21K7/00H01J35/08H01J2235/088
    • An x-ray source comprises a structured anode that has a thin top layer made of the desired target material and a thick bottom layer made of low atomic number and low density materials with good thermal properties. In one example, the anode comprises a layer of copper with an optimal thickness deposited on a layer of beryllium or diamond substrate. This structured target design allows for the use of efficient high energy electrons for generation of characteristic x-rays per unit energy deposited in the top layer and the use of the bottom layer as a thermal sink. This anode design can be applied to substantially increase the brightness of stationary, rotating anode or other electron bombardment-based sources where brightness is defined as number of x-rays per unit area and unit solid angle emitted by a source and is a key figure of merit parameter for a source.
    • X射线源包括具有由所需目标材料制成的薄顶层的结构化阳极和由具有良好热性能的低原子序数和低密度材料制成的厚底层。 在一个实例中,阳极包括沉积在铍或金刚石基底层上的最佳厚度的铜层。 该结构化目标设计允许使用高效的高能电子来产生沉积在顶层中的每单位能量的特征x射线,以及使用底层作为散热器。 该阳极设计可以应用于基本上增加固定的,旋转的阳极或其他基于电子轰击的源的亮度,其中亮度被定义为每单位面积的x射线数量和由源发射的单位立体角的数量,并且是 来源的优点参数。
    • 3. 发明授权
    • Fabrication methods for micro compounds optics
    • 微复合光学制造方法
    • US07365909B2
    • 2008-04-29
    • US10688187
    • 2003-10-17
    • Wenbing YunYuxin WangMichael FeserAlan Lyon
    • Wenbing YunYuxin WangMichael FeserAlan Lyon
    • G02B27/44
    • G02B27/4211G02B3/08G02B27/4272G03F7/0005Y10S438/975
    • Methods for fabricating refractive element(s) and aligning the elements in a compound optic, typically to a zone plate element. The techniques are used for fabricating micro refractive, such as Fresnel, optics and compound optics including two or more optical elements for short wavelength radiation. One application is the fabrication of the Achromatic Fresnel Optic (AFO). Techniques for fabricating the refractive element generally include: 1) ultra-high precision mechanical machining, e.g,. diamond turning; 2) lithographic techniques including gray-scale lithography and multi-step lithographic processes; 3) high-energy beam machining, such as electron-beam, focused ion beam, laser, and plasma-beam machining; and 4) photo-induced chemical etching techniques. Also addressed are methods of aligning the two optical elements during fabrication and methods of maintaining the alignment during subsequent operation.
    • 用于制造折射元件并将复合光学元件中的元件对准的方法,通常与区域板元件对准。 这些技术用于制造微折射,例如菲涅尔,光学和复合光学器件,包括用于短波长辐射的两个或更多个光学元件。 一种应用是制造消色差菲涅耳光(AFO)。 用于制造折射元件的技术通常包括:1)超高精度机械加工,例如 钻石车削 2)光刻技术,包括灰阶光刻和多步光刻工艺; 3)高能束加工,如电子束,聚焦离子束,激光和等离子束加工; 和4)光诱导化学蚀刻技术。 还涉及在制造期间对准两个光学元件的方法以及在随后的操作期间维持对准的方法。
    • 5. 发明申请
    • Fabrication Methods for Micro Compound Optics
    • 微复合光学制造方法
    • US20080094694A1
    • 2008-04-24
    • US11958544
    • 2007-12-18
    • Wenbing YunYuxin WangMichael FeserAlan Lyon
    • Wenbing YunYuxin WangMichael FeserAlan Lyon
    • G02B27/44
    • G02B27/4211G02B3/08G02B27/4272G03F7/0005Y10S438/975
    • Methods for fabricating refractive element(s) and aligning the elements in a compound optic, typically to a zone plate element. The techniques are used for fabricating micro refractive, such as Fresnel, optics and compound optics including two or more optical elements for short wavelength radiation. One application is the fabrication of the Achromatic Fresnel Optic (AFO). Techniques for fabricating the refractive element generally include: 1) ultra-high precision mechanical machining, e.g,. diamond turning; 2) lithographic techniques including gray-scale lithography and multi-step lithographic processes; 3) high-energy beam machining, such as electron-beam, focused ion beam, laser, and plasma-beam machining; and 4) photo-induced chemical etching techniques. Also addressed are methods of aligning the two optical elements during fabrication and methods of maintaining the alignment during subsequent operation.
    • 用于制造折射元件并将复合光学元件中的元件对准的方法,通常与区域板元件对准。 这些技术用于制造微折射,例如菲涅尔,光学和复合光学器件,包括用于短波长辐射的两个或更多个光学元件。 一种应用是制造消色差菲涅耳光(AFO)。 用于制造折射元件的技术通常包括:1)超高精度机械加工,例如 钻石车削 2)光刻技术,包括灰阶光刻和多步光刻工艺; 3)高能束加工,如电子束,聚焦离子束,激光和等离子束加工; 和4)光诱导化学蚀刻技术。 还涉及在制造期间对准两个光学元件的方法以及在随后的操作期间维持对准的方法。
    • 10. 发明授权
    • System and method for quantitative reconstruction of Zernike phase-contrast images
    • Zernike相位对比图像的定量重建系统和方法
    • US07787588B1
    • 2010-08-31
    • US12506946
    • 2009-07-21
    • Wenbing YunMichael FeserBenjamin Hornberger
    • Wenbing YunMichael FeserBenjamin Hornberger
    • G21K7/00G01N23/00
    • G21K7/00G01N23/046G01N2223/419
    • The principle of reciprocity states that full-field and scanning microscopes can produce equivalent images by interchanging the roles of condenser and detector. Thus, the contrast transfer function inversion previously used for images from scanning systems can be applied to Zernike phase contrast images. In more detail, a full-field x-ray imaging system for quantitatively reconstructing the phase shift through a specimen comprises a source that generates x-ray radiation, a condenser x-ray lens for projecting the x-ray radiation onto the specimen, an objective x-ray lens for imaging the x-ray radiation transmitted through the specimen, a phase-shifting device to shift the phase of portions of x-ray radiation by a determined amount, and an x-ray detector that detects the x-ray radiation transmitted through the specimen to generate a detected image. An image processor then determines a Fourier filtering function and reconstructs the quantitative phase shift through the specimen by application of the Fourier filtering function to the detected image. As a result, artifacts due to absorption contrast can be removed from the detecting image. This corrected image can then be used in generating three dimensional (3D) images using computed tomography.
    • 互惠原则指出,全场和扫描显微镜可以通过交换冷凝器和检测器的作用来产生等效的图像。 因此,先前用于来自扫描系统的图像的对比度传递函数反演可以应用于Zernike相位对比图像。 更详细地,用于定量重建通过样本的相移的全场x射线成像系统包括产生x射线辐射的源,用于将X射线辐射投射到样本上的聚光器x射线透镜, 用于对通过样本透射的x射线辐射进行成像的物镜X射线透镜,将X射线辐射部分的相位偏移确定量的相移装置,以及检测x射线的X射线检测器 透射通过样品的辐射以产生检测到的图像。 然后,图像处理器确定傅里叶滤波函数,并通过对检测图像应用傅里叶滤波函数来重建通过样本的定量相移。 结果,可以从检测图像中去除由吸收对比度引起的假象。 然后可以使用计算机断层扫描来将该校正后的图像用于生成三维(3D)图像。