会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of fabricating a p-type CaO-doped SrCu2O2 thin film
    • 制造p型CaO掺杂SrCu2O2薄膜的方法
    • US07087526B1
    • 2006-08-08
    • US11261020
    • 2005-10-27
    • Wei-Wei ZhuangWei GaoYoshi Ono
    • Wei-Wei ZhuangWei GaoYoshi Ono
    • H01L23/02
    • C23C26/00
    • A method of CaO-doped SrCu2O2 spin-on precursor synthesis and low temperature p-type thin film deposition, includes preparing a wafer to receive a spin-coating thereon; selecting metalorganic compounds to form a SrCu2O2 precursor, mixing and refluxing the metalorganic compounds to form a precursor mixture; filtering the precursor mixture to produce a spin-coating precursor; applying the spin-coating precursor to the wafer in a two-step spin coating procedure; baking the spin-coated wafer using a hot-plate bake to evaporate substantially all of the solvents; and annealing the spin-coated wafer to form a CaO-doped SrCu2O2 layer thereon.
    • 掺有CaO的SrCu 2 O 2 O 2旋涂前体合成和低温p型薄膜沉积的方法包括制备晶片以在其上接受旋涂法 ; 选择金属有机化合物以形成SrCu 2 O 2 O 2前体,将金属有机化合物混合并回流以形成前体混合物; 过滤前体混合物以产生旋涂前体; 以两步旋涂方法将旋涂前驱体施加到晶片上; 使用热板烘烤烘烤旋涂的晶片以基本上蒸发所有溶剂; 以及对旋涂的晶片退火以在其上形成掺杂CaO的SrCu 2 O 2 O 2层。
    • 7. 发明申请
    • Sub-Resolutional Grayscale Reticle
    • 子分辨灰度光栅
    • US20100040958A1
    • 2010-02-18
    • US12193568
    • 2008-08-18
    • Bruce D. UlrichYoshi OnoWei Gao
    • Bruce D. UlrichYoshi OnoWei Gao
    • G03F1/00
    • G03F1/50G03F7/0005
    • A sub-resolutional grayscale reticle and associated fabrication method have been presented. The method provides a transparent substrate, and forms a plurality of coincident partial-light transmissive layers overlying the transparent substrate. A pattern is formed, sub-resolutional at a first wavelength, in at least one of the transmissive layers. If there are n transmissive layers, the reticle transmits at least (n+1) intensities of light. In one aspect, each of the plurality of transmissive layers has the same extinction coefficient and the same thickness. In other aspects, the transmissive layers may have different thickness. Then, even if the extinction coefficients are the same, the attenuation of light through each layer is different. The transmission characteristics of the reticle can be further varied if the transmissive layers have different extinction coefficients. Likewise, the transmission characteristics through the sub-resolutional patterns can be varied.
    • 已经提出了一种亚分辨灰度标线和相关的制造方法。 该方法提供透明基板,并且形成覆盖透明基板的多个重合部分透光层。 在至少一个透射层中形成在第一波长处副溶液的图案。 如果存在n个透射层,则光罩传播至少(n + 1)个光强。 在一个方面,多个透射层中的每一个具有相同的消光系数和相同的厚度。 在其它方面,透射层可以具有不同的厚度。 那么即使消光系数相同,每层的光的衰减也是不同的。 如果透射层具有不同的消光系数,则可以进一步改变掩模版的透射特性。 同样,可以改变通过子解决图案的传输特性。
    • 10. 发明授权
    • Electroluminescent device
    • 电致发光器件
    • US07208768B2
    • 2007-04-24
    • US10836669
    • 2004-04-30
    • Yoshi OnoWei GaoJohn F. Conley, Jr.Osamu NishioKeizo Sakiyama
    • Yoshi OnoWei GaoJohn F. Conley, Jr.Osamu NishioKeizo Sakiyama
    • H01L27/15
    • H01L33/28H01L33/18H01L33/34Y10S977/95
    • A method is provided for forming an electroluminescent device. The method comprises: providing a type IV semiconductor material substrate; forming a p+/n+ junction in the substrate, typically a plurality of interleaved p+/n+ junctions are formed; and, forming an electroluminescent layer overlying the p+/n+ junction(s) in the substrate. The type IV semiconductor material substrate can be Si, C, Ge, SiGe, or SiC. For example, the substrate can be Si on insulator (SOI), bulk Si, Si on glass, or Si on plastic. The electroluminescent layer can be a material such as nanocrystalline Si, nanocrystalline Ge, fluorescent polymers, or type II–VI materials such as ZnO, ZnS, ZnSe, CdSe, and CdS. In some aspect, the method further comprises forming an insulator film interposed between the substrate and the electroluminescent layer. In another aspect, the method comprises forming a conductive electrode overlying the electroluminescent layer.
    • 提供了形成电致发光器件的方法。 该方法包括:提供IV型半导体材料基板; 在衬底中形成p + / n +结,通常形成多个交错的p + / n +结; 并且形成覆盖衬底中的p + / n +结的电致发光层。 IV型半导体材料基板可以是Si,C,Ge,SiGe或SiC。 例如,衬底可以是绝缘体上的硅(SOI),玻璃上的体积Si,Si或塑料上的Si。 电致发光层可以是诸如纳米晶体Si,纳米晶体Ge,荧光聚合物或诸如ZnO,ZnS,ZnSe,CdSe和CdS的II-VI族材料的材料。 在一些方面,所述方法还包括形成介于基片和电致发光层之间的绝缘膜。 另一方面,该方法包括形成覆盖电致发光层的导电电极。