会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for high spatial resolution stochastic examination of a sample structure labeled with a substance
    • 用物质标记的样品结构的高空间分辨率随机检验方法
    • US08293490B2
    • 2012-10-23
    • US12632639
    • 2009-12-07
    • Volker SeyfriedJochen Sieber
    • Volker SeyfriedJochen Sieber
    • G01N33/53G01N31/00
    • G01N21/6428G01N21/6458
    • A method for high spatial resolution stochastic examination of a biological sample structure labeled with a labeling substance is described. The method comprises providing a biological sample structure; choosing such a labeling substance that has molecules present in a first state and in a second state, and the first and second states differ from one another in at least one photophysical property such that there is sufficient probability that one portion of the molecules of the substance will be in the first state and another portion of the molecules will be in the second state and within which labeling substance a change of the state of the molecules can occur spontaneously between the two states in both directions; and labeling the biological sample structure with the substance.
    • 描述了用标记物质标记的生物样品结构的高空间分辨率随机检查方法。 该方法包括提供生物样品结构; 选择具有以第一状态和第二状态存在的分子的这种标记物质,并且第一和第二状态在至少一种光物理性质上彼此不同,使得物质分子的一部分有足够的可能性 将处于第一状态,并且分子的另一部分将处于第二状态,并且标记物质内的分子状态的变化可以在两个方向的两个状态之间自发地发生; 并用物质标记生物样品结构。
    • 3. 发明申请
    • METHOD FOR HIGH SPATIAL RESOLUTION STOCHASTIC EXAMINATION OF A SAMPLE STRUCTURE LABELED WITH A SUBSTANCE
    • 用于物质标记的样品结构的高空间分辨率STOCHASTIC检验方法
    • US20100160613A1
    • 2010-06-24
    • US12632639
    • 2009-12-07
    • Volker SeyfriedJochen Sieber
    • Volker SeyfriedJochen Sieber
    • C07K1/13
    • G01N21/6428G01N21/6458
    • A method for high spatial resolution stochastic examination of a biological sample structure labeled with a labeling substance is described. The method comprises providing a biological sample structure; choosing such a labeling substance that has molecules present in a first state and in a second state, and the first and second states differ from one another in at least one photophysical property such that there is sufficient probability that one portion of the molecules of the substance will be in the first state and another portion of the molecules will be in the second state and within which labeling substance a change of the state of the molecules can occur spontaneously between the two states in both directions; and labeling the biological sample structure with the substance.
    • 描述了用标记物质标记的生物样品结构的高空间分辨率随机检查方法。 该方法包括提供生物样品结构; 选择具有以第一状态和第二状态存在的分子的这种标记物质,并且第一和第二状态在至少一种光物理性质上彼此不同,使得物质分子的一部分有足够的可能性 将处于第一状态,并且分子的另一部分将处于第二状态,并且标记物质内的分子状态的变化可以在两个方向的两个状态之间自发地发生; 并用物质标记生物样品结构。
    • 6. 发明授权
    • Acousto-optical system, microscope and method of use of the acousto-optical system
    • 声光系统,显微镜和声光系统的使用方法
    • US08681412B2
    • 2014-03-25
    • US13151055
    • 2011-06-01
    • Bernd WidzgowskiHolger BirkVolker Seyfried
    • Bernd WidzgowskiHolger BirkVolker Seyfried
    • G02F1/33G02F1/11
    • G02F1/113G02B21/0032G02B21/0076
    • An acousto-optical system is described comprising at least one acousto-optical element having at least one transducer that is attached to a crystal, a driver unit for generating at least one acoustic signal for driving acousto-optical elements modifying light transmitted through the acousto-optical element and comprising at least one digital data processing unit, at least one digital-to-analog converter transforming the digital combination signal into an initial analog driver signal, and an amplifier for amplifying the initial analog driver signal to become said analog electronic driver signal. Further, a microscope and a method of operating the acousto-optical element is are described. Various objectives are achieved like more flexibility, real time compensation for non-linearity and reducing the number, size, costs and energy consumption of electronic components.
    • 描述了一种声光学系统,其包括至少一个具有至少一个连接到晶体的换能器的声光元件,驱动单元,用于产生用于驱动声光元件的至少一个声信号,所述声光信号修改透过声 - 光学元件,并且包括至少一个数字数据处理单元,将数字组合信号变换为初始模拟驱动器信号的至少一个数模转换器,以及用于放大初始模拟驱动器信号以成为所述模拟电子驱动器信号的放大器 。 此外,描述了显微镜和操作声光元件的方法。 实现了各种目标,如更灵活,非线性的实时补偿和减少电子元件的数量,尺寸,成本和能耗。
    • 7. 发明申请
    • Method and Device for Light-Microscopic Imaging of a Sample Structure
    • 用于样品结构的光显微镜成像的方法和装置
    • US20130222568A1
    • 2013-08-29
    • US13806047
    • 2011-06-27
    • Marcus DybaVolker Seyfried
    • Marcus DybaVolker Seyfried
    • G02B21/36
    • G02B21/365G01N21/6428G01N21/6458G02B21/16G02B21/367G02B27/58
    • A method for light-microscopy imaging of a sample structure (2, 34) is described, having the following steps: preparing the sample structure (2, 34) with markers that are transferrable into a state imageable by light microscopy, generating a sequence of individual-image data sets by sequential imaging of the sample structure (2, 34), in such a way that for each image, only a subset of the totality of the markers is in each case transferred into the state imageable by light microscopy, the markers of the respective subset having an average spacing from one another which is greater than the resolution limit of light-microscopy imaging which determines the extent of a light distribution representing one of the respectively imaged markers, generating at least two data blocks in which multiple successive individual-image data sets are respectively combined, superposing the individual-image data sets contained in the respective data block to yield a superposed-image data set, identifying an image offset between the superposed-image data sets, correcting the individual-image data sets that are contained in at least one of the superposed-image data sets on the basis of the identified image offset, determining center point positions of the light distributions representing the imaged markers, and assembling the center point positions into an offset-corrected overall image.
    • 描述了一种用于样品结构(2,34)的光学显微镜成像的方法,具有以下步骤:用可转移到可通过光学显微镜成像的状态的标记物制备样品结构(2,34),产生序列 通过对样本结构(2,34)进行顺序成像,通过对每个图像进行顺序成像的单个图像数据集,只有标记的全部子集在每种情况下都转移到通过光学显微镜可成像的状态, 相应子集的标记具有彼此之间的平均间隔,其大于光学显微镜成像的分辨率极限,其确定表示分别成像的标记之一的光分布的程度,生成至少两个数据块,其中多个连续 分别组合各个图像数据集,将包含在各个数据块中的各个图像数据集叠加以产生叠加图像数据集,识别 叠加图像数据组之间的图像偏移,基于所识别的图像偏移来校正包含在至少一个叠加图像数据集中的各个图像数据集,确定表示所述图像偏移的光分布的中心点位置 成像标记,以及将中心点位置组装成偏移校正的整体图像。
    • 9. 发明授权
    • Confocal microscope and method for detecting by means of a confocal microscope
    • 共聚焦显微镜和共聚焦显微镜检测方法
    • US07817271B2
    • 2010-10-19
    • US12044951
    • 2008-03-08
    • Volker SeyfriedFrank Schreiber
    • Volker SeyfriedFrank Schreiber
    • G01J3/28
    • G02B21/0064
    • The invention relates to a confocal microscope which illuminates a sample (15) by means of at least one light source. A detection light beam (17) is emitted from the sample (15). The detection light beam (17) is spectrally split up in a spatial manner by the dispersive element (20) and subsequently formed on a photosensor chip (19) by means of a detection optical system (22). At least one expanding optical system (23) is arranged in front of the dispersive element (20) in the direction of the detection light beam (17). The expanding optical system (23) is embodied in such a manner that the numerical aperture of the detection optical system (22) is independent from the numerical aperture of the detection light beam (17) on the detection apertured diaphragm (18).
    • 本发明涉及通过至少一个光源照射样品(15)的共聚焦显微镜。 从样品(15)发射检测光束(17)。 检测光束(17)通过色散元件(20)以空间方式进行光谱分离,随后通过检测光学系统(22)形成在光电传感器芯片(19)上。 至少一个扩展光学系统(23)沿着检测光束(17)的方向布置在色散元件(20)的前面。 扩展的光学系统(23)以使得检测光学系统(22)的数值孔径独立于检测孔径隔膜(18)上的检测光束(17)的数值孔径的方式实现。