会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Traveling-wave photodetector
    • 行波光电探测器
    • US5270532A
    • 1993-12-14
    • US898999
    • 1992-06-15
    • Vincent M. HietalaGregory A. Vawter
    • Vincent M. HietalaGregory A. Vawter
    • G02B6/42H01J40/14
    • G02B6/42
    • The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
    • 本发明的行波光检测器结合了吸收光波导和电传输线,其中波导中的光吸收导致在电传输线的电极处的光电流。 电分布式行波光电检测器的光波导和电传输线被设计成实现光波导中的光与传输线上产生的电信号之间的匹配速度。 由于光吸收的有效扩展体积,这种速度同步为行波光电探测器提供了大的电带宽和高量子效率。 由于其物理尺寸较大,所以行波光电探测器还具有较大的功耗。
    • 5. 发明授权
    • Parallel optical sampler
    • 并行光采样器
    • US08730562B1
    • 2014-05-20
    • US13292861
    • 2011-11-09
    • Anna Tauke-PedrettiErik J. SkogenGregory A. Vawter
    • Anna Tauke-PedrettiErik J. SkogenGregory A. Vawter
    • G02F2/00H01S5/00
    • G02F7/00H03M1/1215H03M1/1245
    • An optical sampler includes a first and second 1×n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.
    • 光采样器包括分别将输入光采样信号和光模拟输入信号分别分成n个并行通道的第一和第二1×n光束分离器,提供n个并行延迟输入光采样信号的多个光延迟元件,n个光电二极管 将n个并行光模拟输入信号转换成n个相应的电输出信号,以及n个光调制器,通过相应的电输出信号调制输入光采样信号或光模拟输入信号,并提供光模拟输入信号的n个连续的光采样 。 多个输出光电二极管和eADC将n个连续的光学样本转换成n个连续的数字采样。 光调制器可以是光电二极管连接的马赫 - 曾德调制器。 公开了一种采样光模拟输入信号的方法。
    • 6. 发明申请
    • Photonic Circuit
    • 光电路
    • US20130084074A1
    • 2013-04-04
    • US13248412
    • 2011-09-29
    • Gregory A. VawterJeff B. LilleyAnna M. Tauke PedrettiRick C. Jones
    • Gregory A. VawterJeff B. LilleyAnna M. Tauke PedrettiRick C. Jones
    • H04B10/00
    • H04B10/2575
    • An integrated or monolithic photonic circuit that modulates RF signals onto optical signals and then performs a channelizing filter function according to the RF content. According to an exemplary embodiment, the photonic circuit is employed in an aircraft system that includes a front end, a photonic circuit, an optical connection, and an electronic module at some distant location in the aircraft. RF signals are received by an antenna in the front end, the RF signals are then modulated onto optical signals by a modulator and a laser, the modulated optical signals are filtered by a filter array according to a channelizing filter function, and the modulated and channelized optical signals are then carried over the optical connection to the electronic module. Other options like a wavelength-tunable laser and corresponding feedback feature, as well as ring filters with integrated semiconductor optical amplifiers (SOAs) are also possible.
    • 一种集成或单片光子电路,其将RF信号调制到光信号上,然后根据RF内容执行信道化滤波器功能。 根据示例性实施例,光子电路用于包括前端,光子电路,光学连接和在飞行器的某个远处位置的电子模块的飞行器系统。 RF信号由前端的天线接收,然后通过调制器和激光器将RF信号调制到光信号上,调制的光信号根据信道化滤波器函数被滤波器阵列滤波,调制和信道化 光信号然后通过光连接被传送到电子模块。 其他选项,如波长可调激光器和相应的反馈特性,以及具有集成半导体光放大器(SOAs)的环形滤波器也是可能的。
    • 7. 发明授权
    • Optical domain analog to digital conversion methods and apparatus
    • 光域模数转换方法和装置
    • US08725004B1
    • 2014-05-13
    • US13359300
    • 2012-01-26
    • Gregory A. Vawter
    • Gregory A. Vawter
    • H04B10/04H03M1/12
    • G02F7/00
    • Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.
    • 公开了用于光模拟转换的方法和装置。 通过将光学模拟信号映射到波长调制的光束上,将映射的光束通过干涉仪,以产生模拟比特表示信号,并将模拟比特表示信号转换为光学数字信号,来转换光学信号。 光电二极管接收光模拟信号,耦合到光电二极管的波长调制激光器将光模拟信号映射到波长调制光束,干涉仪产生来自映射波长调制光束的模拟位表示信号,以及对应于 干涉仪从模拟位表示信号产生数字位信号。
    • 8. 发明授权
    • Methods for fabricating a micro heat barrier
    • 制造微热障的方法
    • US06673254B1
    • 2004-01-06
    • US10025446
    • 2001-12-19
    • Albert C. MarshallStanley H. KravitzChris P. TiggesGregory A. Vawter
    • Albert C. MarshallStanley H. KravitzChris P. TiggesGregory A. Vawter
    • B32B3100
    • B81B3/0081B81B2203/0361
    • Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (
    • 用于制造高效微米级微阻隔结构的方法和基于半导体和/或MEMS制造技术制造微热阻的方法。 该微热屏障具有高度小于100微米的非金属独立的微型支架的阵列,附着于基底。 红外反射膜(例如,1微米金)可以由微支架阵列支撑以提供辐射屏蔽。 微型隔热层可以抽真空,以消除气相热传导和对流。 可以使用半各向同性的反应离子等离子体蚀刻来形成具有尖锐尖端(<0.1微米)的尖头状形状的微型卡口,以使尖端的接触面积最小化。 热源可以直接放置在微型杯上。 微热障可以具有在10 -6至10 -7 W / m-K范围内的明显的热导率。 可以使用多层反射膜来增加耐热性。
    • 9. 发明授权
    • Micro heat barrier
    • 微热障
    • US06605339B1
    • 2003-08-12
    • US10025449
    • 2001-12-19
    • Albert C. MarshallStanley H. KravitzChris P. TiggesGregory A. Vawter
    • Albert C. MarshallStanley H. KravitzChris P. TiggesGregory A. Vawter
    • B32B326
    • B81B3/0081Y10T428/24802
    • A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (
    • 基于半导体和/或MEMS制造技术的高效微米级微阻隔结构和用于制造微热阻的方法。 该微热屏障具有高度小于100微米的非金属独立的微型支架的阵列,附着于基底。 红外反射膜(例如,1微米金)可以由微支架阵列支撑以提供辐射屏蔽。 微型隔热层可以抽真空,以消除气相热传导和对流。 可以使用半各向同性的反应离子等离子体蚀刻来形成具有尖锐尖端(<0.1微米)的尖头状形状的微型卡口,以使尖端的接触面积最小化。 热源可以直接放置在微型杯上。 微热障可以具有在10-6至10-7W / m-K范围内的明显的热导率。 可以使用多层反射膜来增加耐热性。