会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method to lower work function of gate electrode through Ge implantation
    • 通过Ge注入来降低栅电极的功函数的方法
    • US20050095773A1
    • 2005-05-05
    • US10701963
    • 2003-11-05
    • Tze Ho ChanMousumi BhatJeffrey Chee
    • Tze Ho ChanMousumi BhatJeffrey Chee
    • H01L21/3215H01L21/8238H01R4/64H01L21/302H01L21/461H01R4/60
    • H01L21/823842H01L21/32155H01L21/82385
    • A method for forming selective P type and N type gates is described. A gate oxide layer is grown overlying a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. Germanium ions are implanted into a portion of the polysilicon layer not covered by a mask to form a polysilicon-germanium layer. The polysilicon layer and the polysilicon-germanium layer are patterned to form NMOS polysilicon gates and PMOS polysilicon-germanium gates. In an alternative, nitrogen ions are implanted into the polysilicon-germanium layer and the gates are annealed after patterning to redistribute the germanium ions throughout the polysilicon-germanium layer. In a second alternative, germanium ions are implanted into a first thin polysilicon layer, then a second polysilicon layer is deposited to achieve the total polysilicon layer thickness before patterning the gates.
    • 描述了形成选择性P型和N型栅极的方法。 生长在半导体衬底上的栅氧化层。 沉积在栅极氧化物层上的多晶硅层。 将锗离子注入到未被掩模覆盖的多晶硅层的一部分中以形成多晶硅 - 锗层。 图案化多晶硅层和多晶硅 - 锗层以形成NMOS多晶硅栅极和PMOS多晶硅 - 锗栅极。 替代地,将氮离子注入到多晶硅 - 锗层中,并且在图案化之后对栅极进行退火以将锗离子重新分布在整个多晶硅 - 锗层中。 在第二替代方案中,将锗离子注入到第一薄多晶硅层中,然后沉积第二多晶硅层以在栅极图案化之前实现总多晶硅层厚度。
    • 4. 发明授权
    • Method to lower work function of gate electrode through Ge implantation
    • 通过Ge注入来降低栅电极的功函数的方法
    • US07101746B2
    • 2006-09-05
    • US10701963
    • 2003-11-05
    • Tze Ho Simon ChanMousumi BhatJeffrey Chee
    • Tze Ho Simon ChanMousumi BhatJeffrey Chee
    • H01L21/8238H01L21/336
    • H01L21/823842H01L21/32155H01L21/82385
    • A method for forming selective P type and N type gates is described. A gate oxide layer is grown overlying a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. Germanium ions are implanted into a portion of the polysilicon layer not covered by a mask to form a polysilicon-germanium layer. The polysilicon layer and the polysilicon-germanium layer are patterned to form NMOS polysilicon gates and PMOS polysilicon-germanium gates. In an alternative, nitrogen ions are implanted into the polysilicon-germanium layer and the gates are annealed after patterning to redistribute the germanium ions throughout the polysilicon-germanium layer. In a second alternative, germanium ions are implanted into a first thin polysilicon layer, then a second polysilicon layer is deposited to achieve the total polysilicon layer thickness before patterning the gates.
    • 描述了形成选择性P型和N型栅极的方法。 生长在半导体衬底上的栅氧化层。 沉积在栅极氧化物层上的多晶硅层。 将锗离子注入到未被掩模覆盖的多晶硅层的一部分中以形成多晶硅 - 锗层。 图案化多晶硅层和多晶硅 - 锗层以形成NMOS多晶硅栅极和PMOS多晶硅 - 锗栅极。 替代地,将氮离子注入到多晶硅 - 锗层中,并且在图案化之后对栅极进行退火以将锗离子重新分布在整个多晶硅 - 锗层中。 在第二替代方案中,将锗离子注入到第一薄多晶硅层中,然后沉积第二多晶硅层以在栅极图案化之前实现总多晶硅层厚度。
    • 9. 发明授权
    • Method of multiple pulse laser annealing to activate ultra-shallow junctions
    • 多脉冲激光退火激活超浅结的方法
    • US06897118B1
    • 2005-05-24
    • US10776794
    • 2004-02-11
    • Chyiu-Hyia PoonByung Jin ChoYong Feng LuAlex SeeMousumi Bhat
    • Chyiu-Hyia PoonByung Jin ChoYong Feng LuAlex SeeMousumi Bhat
    • H01L21/265H01L21/268H01L21/324H01L21/336H01L21/8238H01L21/20H01L21/36
    • H01L29/6659H01L21/26506H01L21/26513H01L21/268H01L21/324H01L21/823814
    • A method for forming a highly activated ultra shallow ion implanted semiconductive elements for use in sub-tenth micron MOSFET technology is described. A key feature of the method is the ability to activate the implanted impurity to a highly active state without permitting the dopant to diffuse further to deepen the junction. A selected single crystalline silicon active region is first amorphized by implanting a heavy ion such as silicon or germanium. A semiconductive impurity for example boron is then implanted and activated by pulsed laser annealing whereby the pulse fluence, frequency, and duration are chosen to maintain the amorphized region just below it's melting temperature. It is found that just below the melting temperature there is sufficient local ion mobility to secure the dopant into active positions within the silicon matrix to achieve a high degree of activation with essentially no change in concentration profile. The selection of the proper laser annealing parameters is optimized by observation of the reduction of sheet resistance and concentration profile as measured on a test site. Application of the method is applied to forming a MOS FET and a CMOS device. The additional processing steps required by the invention are applied simultaneously to both n-channel and p-channel devices of the CMOS device pair.
    • 描述了用于形成用于次十分之一米MOSFET技术的高激活超浅离子注入半导体元件的方法。 该方法的关键特征是能够将注入的杂质激活到高活性状态,而不允许掺杂剂进一步扩散以加深该结。 选择的单晶硅有源区域首先通过注入重离子如硅或锗来非晶化。 然后通过脉冲激光退火将诸如硼的半导体杂质注入并激活,由此选择脉冲能量密度,频率和持续时间以将非晶化区域保持在低于其熔融温度。 已经发现,恰好低于熔融温度,存在足够的局部离子迁移率,以将掺杂剂固定在硅基质内的活性位置,以实现高度的活化,基本上没有浓度分布的变化。 通过观察在测试部位测量的薄层电阻和浓度分布的降低来优化选择适当的激光退火参数。 该方法的应用用于形成MOS FET和CMOS器件。 本发明所需的附加处理步骤同时应用于CMOS器件对的n沟道和p沟道器件。