会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Multi-Grating Biosensor For Label-Independent Optical Readers
    • 用于标签无关光学读取器的多光栅生物传感器
    • US20110102799A1
    • 2011-05-05
    • US12915856
    • 2010-10-29
    • Steven R. MatejkaRobert Adam ModavisDavid Andrew PastelGarrett Andrew Piech
    • Steven R. MatejkaRobert Adam ModavisDavid Andrew PastelGarrett Andrew Piech
    • G01N21/55G02B6/10
    • G01N21/7743G01N21/253G01N21/276
    • A multi-grating resonant waveguide (RWG) biosensor for an optical reader system having a spatial resolution limit is disclosed. The multi-grating RWG biosensor includes one or more signal-grating regions and one or more reference-grating regions. The multi-grating RWG biosensor can also include a non-resonance region that spatially separates the one or more signal-grating regions, that spatially separates the one or more reference-grating regions, and that spatially separates the one or more reference-grating regions from the one or more signal-grating regions. The non-resonance region can have a minimum width greater than the optical reader system spatial resolution limit. The RWG biosensor can have an asymmetric split-grating configuration. Methods of measuring a signal resonant wavelength of a multi-grating RWG biosensor using an optical reader having a spatial resolution limit are also disclosed.
    • 公开了一种具有空间分辨率极限的光学读取器系统的多光栅谐振波导(RWG)生物传感器。 多光栅RWG生物传感器包括一个或多个信号光栅区域和一个或多个参考光栅区域。 多光栅RWG生物传感器还可以包括空间上分离一个或多个信号光栅区域的非共振区域,其在空间上分离一个或多个参考光栅区域,并且在空间上分离一个或多个参考光栅区域 从一个或多个信号光栅区域。 非共振区域可以具有大于光学读取器系统空间分辨率极限的最小宽度。 RWG生物传感器可以具有非对称分裂光栅配置。 还公开了使用具有空间分辨率极限的光学读取器来测量多光栅RWG生物传感器的信号谐振波长的方法。
    • 2. 发明授权
    • Multi-grating biosensor for label-independent optical readers
    • 用于标签无关光学读取器的多光栅生物传感器
    • US08619260B2
    • 2013-12-31
    • US12915856
    • 2010-10-29
    • Steven R MatejkaRobert Adam ModavisDavid Andrew PastelGarrett Andrew PiechChristopher L. Timmons
    • Steven R MatejkaRobert Adam ModavisDavid Andrew PastelGarrett Andrew PiechChristopher L. Timmons
    • G01N21/55G01J3/30G01J3/28
    • G01N21/7743G01N21/253G01N21/276
    • A multi-grating resonant waveguide (RWG) biosensor for an optical reader system having a spatial resolution limit is disclosed. The multi-grating RWG biosensor includes one or more signal-grating regions and one or more reference-grating regions. The multi-grating RWG biosensor can also include a non-resonance region that spatially separates the one or more signal-grating regions, that spatially separates the one or more reference-grating regions, and that spatially separates the one or more reference-grating regions from the one or more signal-grating regions. The non-resonance region can have a minimum width greater than the optical reader system spatial resolution limit. The RWG biosensor can have an asymmetric split-grating configuration. Methods of measuring a signal resonant wavelength of a multi-grating RWG biosensor using an optical reader having a spatial resolution limit are also disclosed.
    • 公开了一种具有空间分辨率极限的光学读取器系统的多光栅谐振波导(RWG)生物传感器。 多光栅RWG生物传感器包括一个或多个信号光栅区域和一个或多个参考光栅区域。 多光栅RWG生物传感器还可以包括在空间上分离一个或多个信号光栅区域的非共振区域,其在空间上分离一个或多个参考光栅区域,并且在空间上分离一个或多个参考光栅区域 从一个或多个信号光栅区域。 非共振区域可以具有大于光学读取器系统空间分辨率极限的最小宽度。 RWG生物传感器可以具有非对称分裂光栅配置。 还公开了使用具有空间分辨率极限的光学读取器来测量多光栅RWG生物传感器的信号谐振波长的方法。
    • 8. 发明授权
    • Methods and systems for optimizing the alignment of optical packages
    • 用于优化光学封装对准的方法和系统
    • US08294130B2
    • 2012-10-23
    • US12813610
    • 2010-06-11
    • Jacques GollierGarrett Andrew PiechDaniel Ohen Ricketts
    • Jacques GollierGarrett Andrew PiechDaniel Ohen Ricketts
    • G01N21/86
    • G02B26/101G02F1/377
    • A method for optimizing the alignment of an optical package includes directing a beam spot of a laser along a folded optical path and onto a waveguide portion of a wavelength conversion. The output intensity of the wavelength conversion device is measured as a position of an adjustable optical component is adjusted about a first scanning axis and a second scanning axis thereby traversing the beam spot along a first and second scan lines on the waveguide portion of the wavelength conversion device. The change in the output intensity of the wavelength conversion device is then determined based on the adjusted position of the adjustable optical component. The adjustable optical component is then positioned on the first scanning axis and the second scanning axis based on the determined changes in the output intensity of the wavelength conversion device such that the output intensity of the wavelength conversion device is maximized.
    • 用于优化光学封装的对准的方法包括将激光束的束斑沿着折叠的光路引导到波长转换的波导部分上。 测量波长转换装置的输出强度,因为可调节光学部件的位置围绕第一扫描轴和第二扫描轴进行调节,从而沿着波长转换的波导部分上的第一和第二扫描线遍及光束点 设备。 然后,基于可调节光学部件的调整位置来确定波长转换装置的输出强度的变化。 基于所确定的波长转换装置的输出强度的变化,使可调光学部件位于第一扫描轴和第二扫描轴上,使得波长转换装置的输出强度最大化。
    • 9. 发明申请
    • Methods And Systems For Optimizing The Alignment Of Optical Packages
    • 用于优化光学封装的对准的方法和系统
    • US20110303820A1
    • 2011-12-15
    • US12813610
    • 2010-06-11
    • Jacques GollierGarrett Andrew PiechDaniel Ohen Ricketts
    • Jacques GollierGarrett Andrew PiechDaniel Ohen Ricketts
    • G01J1/24G01B11/27
    • G02B26/101G02F1/377
    • A method for optimizing the alignment of an optical package includes directing a beam spot of a laser along a folded optical path and onto a waveguide portion of a wavelength conversion. The output intensity of the wavelength conversion device is measured as a position of an adjustable optical component is adjusted about a first scanning axis and a second scanning axis thereby traversing the beam spot along a first and second scan lines on the waveguide portion of the wavelength conversion device. The change in the output intensity of the wavelength conversion device is then determined based on the adjusted position of the adjustable optical component. The adjustable optical component is then positioned on the first scanning axis and the second scanning axis based on the determined changes in the output intensity of the wavelength conversion device such that the output intensity of the wavelength conversion device is maximized.
    • 用于优化光学封装的对准的方法包括将激光束的束斑沿着折叠的光路引导到波长转换的波导部分上。 测量波长转换装置的输出强度,因为可调节光学部件的位置围绕第一扫描轴和第二扫描轴进行调节,从而沿着波长转换的波导部分上的第一和第二扫描线遍及光束点 设备。 然后,基于可调节光学部件的调整位置来确定波长转换装置的输出强度的变化。 基于所确定的波长转换装置的输出强度的变化,使可调光学部件位于第一扫描轴和第二扫描轴上,使得波长转换装置的输出强度最大化。
    • 10. 发明授权
    • Optical packages and methods for aligning optical packages
    • 用于对准光学封装的光学封装和方法
    • US07835065B2
    • 2010-11-16
    • US12200661
    • 2008-08-28
    • Etienne AlmoricJacques GollierLawrence HughesGarrett Andrew Piech
    • Etienne AlmoricJacques GollierLawrence HughesGarrett Andrew Piech
    • G02F1/35G02F2/02H01S3/08
    • G02B6/4214G01B11/272G02F1/377G02F2001/3546H01S5/005H01S5/0071H01S5/0092
    • An optical package includes a semiconductor laser, a wavelength conversion device and a MEMS-actuated mirror oriented on a base module to form a folded optical pathway between an output of the semiconductor laser and an input of the wavelength conversion device. An optical assembly is located in a mechanical positioning device and the mechanical positioning device is disposed on the base module along the optical pathway such that the beam of the semiconductor laser passes through the optical assembly, is reflected by the MEMS-actuated mirror back through the optical assembly and into the waveguide portion of the wavelength conversion device. The MEMS-actuated mirror is operable to scan the beam of the semiconductor laser over the input of the wavelength conversion device. The optical assembly may be adjusted along the optical pathway with the mechanical positioning device to focus the beam into the waveguide portion of the wavelength conversion device.
    • 光学封装包括半导体激光器,波长转换器件和面向基底模块的MEMS致动镜,以在半导体激光器的输出端与波长转换器件的输入端之间形成折叠光路。 光学组件位于机械定位装置中,并且机械定位装置沿着光学路径设置在基座模块上,使得半导体激光器的光束通过光学组件,被MEMS致动的反射镜反射回通过 光学组件并进入波长转换装置的波导部分。 MEMS致动反射镜可操作以通过波长转换装置的输入来扫描半导体激光束的光束。 光学组件可以利用机械定位装置沿光学路径调节,以将光束聚焦到波长转换装置的波导部分中。