会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for annealing using partial absorber layer exposed to radiant energy and article made with partial absorber layer
    • 使用暴露于辐射能的部分吸收层退火的方法和用部分吸收层制成的制品
    • US06635541B1
    • 2003-10-21
    • US09659102
    • 2000-09-11
    • Somit TalwarYun WangCarol Gelatos
    • Somit TalwarYun WangCarol Gelatos
    • H01L21331
    • H01L21/324H01L21/268Y10S438/952
    • A method of the invention comprises forming a partial absorber layer (PAL) over at least one integrated transistor device formed on a semiconductor substrate, and exposing the PAL to radiant energy. A first portion of the radiant energy passes through the PAL and is absorbed in the source and drain regions adjacent a gate region of the integrated transistor device and in the semiconductor substrate underneath the field isolation regions of the integrated device. A second portion of the radiant energy is absorbed by the PAL and is thermally conducted from the PAL to the source and drain regions. The first and second portions of the radiant energy are sufficient to melt the source and drain regions to anneal the junctions of the integrated device. The first portion of radiant energy traveling to the substrate underneath the field isolation regions is insufficient in fluence to melt the substrate, and the second portion of radiant energy absorbed by PAL over the field isolation regions is insufficient to cause ablation or surface damage. Accordingly, the source and drain regions can be melted for annealing without overheating the PAL overlying or the substrate beneath the field isolation regions. The invention also includes an article including an integrated device made with a PAL.
    • 本发明的方法包括在半导体衬底上形成的至少一个集成晶体管器件上形成部分吸收层(PAL),并将PAL曝光到辐射能。 辐射能的第一部分通过PAL并且被吸收在与集成晶体管器件的栅极区域相邻的源极和漏极区域以及集成器件的场隔离区域下方的半导体衬底中。 辐射能的第二部分被PAL吸收,并且从PAL热传导到源区和漏区。 辐射能的第一和第二部分足以熔化源极和漏极区域以退火集成器件的结。 在场隔离区域下行进到衬底的辐射能的第一部分的能量密度不足以熔化衬底,并且由PAL在场隔离区域吸收的辐射能的第二部分不足以引起烧蚀或表面损伤。 因此,源极和漏极区域可以被熔化以进行退火,而不会使PAL覆盖层或场隔离区域下面的衬底过热。 本发明还包括一种包括由PAL制成的集成装置的物品。
    • 2. 发明授权
    • Thermally induced reflectivity switch for laser thermal processing
    • 用于激光热处理的热感应反射开关
    • US06495390B2
    • 2002-12-17
    • US09940102
    • 2001-08-27
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L2100
    • B23K26/18B23K26/009H01L21/268H01L21/324
    • A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with laser radiation (10) using a thermally induced reflectivity switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs laser radiation and converts the absorbed radiation into heat. A reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer may comprise one or more thin film layers, and preferably includes a thermal insulator layer and a transition layer. The portion of the reflective switch layer covering the process region has a temperature that corresponds to the temperature of the process region. The reflectivity of the reflectivity switch layer changes from a low reflectivity state to a high reflectivity state at a critical temperature so as to limit the amount of radiation absorbed by the absorber layer by reflecting the incident radiation. This, in turn, limits the amount of heat transferred to the process region from the absorber layer.
    • 一种用于通过使用热诱导反射率开关层(60)从激光辐射(10)曝光来控制传送到工件(W)的处理区域(30)的热量的方法,装置和系统。 本发明的装置是具有沉积在工件上方的诸如硅晶片的吸收层(50)的薄膜叠层(6)。 吸收层的一部分覆盖工艺区域。 吸收层吸收激光辐射并将吸收的辐射转化成热。 反射开关层(60)沉积在吸收层顶部。 反射开关层可以包括一个或多个薄膜层,并且优选地包括热绝缘体层和过渡层。 覆盖处理区域的反射开关层的部分具有对应于处理区域的温度的温度。 反射率开关层的反射率在临界温度从低反射率状态变为高反射率状态,以通过反射入射辐射来限制吸收层吸收的辐射量。 这反过来限制了从吸收层传递到处理区域的热量。
    • 3. 发明授权
    • Laser thermal process for fabricating field-effect transistors
    • 用于制造场效应晶体管的激光热处理
    • US06365476B1
    • 2002-04-02
    • US09698670
    • 2000-10-27
    • Somit TalwarYun Wang
    • Somit TalwarYun Wang
    • H01L21336
    • H01L29/6653H01L21/02675H01L21/2026H01L21/268H01L29/6659
    • A simplified and cost reduced process for fabricating a field-effect transistor semiconductor device (104) using laser radiation is disclosed. The process includes the step of forming removable first dielectric spacers (116R) on the sides (120a, 120b) of the gate (120). Dopants are implanted into the substrate (100) and the substrate is annealed to form an active deep source (108) and an active deep drain (110). The sidewall spacers are removed, and then a blanket pre-amorphization implant is performed to form source and drain amorphized regions (200a, 200b) that include respective extension regions (118a, 118b) that extend up to the gate. A layer of material (210 is deposited over the source and drain extensions, the layer being opaque to a select wavelength of laser radiation (220). The layer is then irradiated with laser radiation of the select wavelength so as to selectively melt the amorphized source and drain extensions, but not the underlying substrate. This causes dopants in the deep source to diffuse into the molten source extension, and dopants in the deep drain to diffuse into the molten drain extension. Upon recrystallization of the extensions, the layer of material is removed, and the FET device is completed using known processing techniques. The above process eliminates the lithography and ion implantation steps normally required for source and drain extension formation, and thereby reduces the manufacturing costs of field-effect transistors.
    • 公开了一种使用激光辐射制造场效应晶体管半导体器件(104)的简化且成本降低的工艺。 该方法包括在栅极(120)的侧面(120a,120b)上形成可移除的第一介电间隔物(116R)的步骤。 将掺杂剂注入到衬底(100)中,并且将衬底退火以形成有源深源(108)和有源深漏极(110)。 去除侧壁间隔物,然后执行毯状预非晶化注入以形成源极和漏极非晶化区域(200a,200b),其包括延伸到栅极的相应延伸区域(118a,118b)。 一层材料(210沉积在源极和漏极延伸部分上,该层对激光辐射的选择波长(220)是不透明的,然后用选择波长的激光辐射照射该层,以选择性地熔化非晶化源 和漏极延伸部分,而不是下面的衬底,这使得深源中的掺杂剂扩散到熔融源延伸中,并且深漏极中的掺杂剂扩散到熔融排放延伸部分中。在延伸部分重结晶时, 去除,并且使用已知的处理技术完成FET器件。上述处理消除了源极和漏极延伸形成通常需要的光刻和离子注入步骤,从而降低了场效应晶体管的制造成本。
    • 4. 发明授权
    • Method for laser thermal processing using thermally induced reflectivity switch
    • 使用热诱导反射率开关的激光热处理方法
    • US06635588B1
    • 2003-10-21
    • US10078842
    • 2002-02-19
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L2126
    • H01L21/02686B23K26/009B23K26/18H01L21/02691H01L21/2026H01L21/268H01L21/324
    • Method for controlling heat transferred to a workpiece (W) process region (30) from laser radiation (10) using a thermally induced reflectivity switch layer (60). A film stack (6) is formed having an absorber layer (50) atop the workpiece with a portion covering the process region. The absorber layer absorbs and converts laser radiation into heat. Reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer comprises one or more layers, e.g. thermal insulator and reflectivity transition layers. The reflective switch layer covering the process region has a temperature related to the temperature of the process region. Reflectivity of the switch layer changes from a low to a high reflectivity state at a critical temperature of the process region, limiting radiation absorbed by the absorber layer by reflecting incident radiation when switched. This limits the amount of heat transferred to the process region from the absorber layer.
    • 用于使用热诱导反射率开关层(60)控制从激光辐射(10)传送到工件(W)处理区域(30)的热的方法。 一个薄膜叠层(6)被形成为具有覆盖工艺区域的部分的工件上方的吸收层(50)。 吸收层吸收并将激光辐射转换成热。 反射开关层(60)沉积在吸收层的顶部。 反射开关层包括一个或多个层,例如 隔热层和反射层过渡层。 覆盖处理区域的反射开关层具有与处理区域的温度相关的温度。 开关层的反射率在处理区域的临界温度从低反射率状态变化到高反射率状态,通过在切换时反射入射辐射来限制吸收层吸收的辐射。 这限制了从吸收层传递到处理区域的热量。
    • 5. 发明授权
    • Thermally induced phase switch for laser thermal processing
    • 用于激光热处理的热诱导相位开关
    • US06479821B1
    • 2002-11-12
    • US09659094
    • 2000-09-11
    • Andrew M. HawrylukSomit TalwarYun WangDavid A. MarkleMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangDavid A. MarkleMichael O. Thompson
    • G03G516
    • H01L21/268G03G5/16
    • A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with a pulse of radiation (10), which may be in the form of a scanning beam (B), using a thermally induced phase switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs radiation and converts the absorbed radiation into heat. The phase switch layer is deposited above or below the absorber layer. The phase switch layer may comprise one or more thin film layers, and may include a thermal insulator layer and a phase transition layer. Because they are in close proximity, the portion of the phase switch layer covering the process region has a temperature that is close to the temperature of the process region. The phase of the phase switch layer changes from a first phase (e.g., solid) to a second phase (e.g., liquid or vapor) at a phase transition temperature (TP). During this phase change, the phase switch layer absorbs heat but does not significantly change temperature. This limits the temperature of the absorber layer and the process region since both are close to the phase change layer.
    • 一种用于控制从辐射脉冲(10)暴露于工件(W)的处理区域(30)的热量的方法,装置和系统,其可以是扫描光束(B)的形式, ,使用热感应相位层(60)。 本发明的装置是具有沉积在工件上方的诸如硅晶片的吸收层(50)的薄膜叠层(6)。 吸收层的一部分覆盖工艺区域。 吸收层吸收辐射并将吸收的辐射转化成热。 相位开关层沉积在吸收层的上方或下方。 相位开关层可以包括一个或多个薄膜层,并且可以包括绝热层和相变层。 由于它们非常接近,覆盖处理区域的相位开关层的部分具有接近处理区域的温度的温度。 在相转变温度(TP)下,相位开关层的相位从第一相(例如,固体)变为第二相(例如,液体或蒸气)。 在该相变期间,相开关层吸热,但不会明显改变温度。 这限制了吸收层和工艺区域的温度,因为它们都接近于相变层。
    • 6. 发明授权
    • Thermally induced reflectivity switch for laser thermal processing
    • 用于激光热处理的热感应反射开关
    • US06303476B1
    • 2001-10-16
    • US09592184
    • 2000-06-12
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L21245
    • B23K26/18B23K26/009H01L21/268H01L21/324
    • A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with laser radiation (10) using a thermally induced reflectivity switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs laser radiation and converts the absorbed radiation into heat. A reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer may comprise one or more thin film layers, and preferably includes a thermal insulator layer and a transition layer. The portion of the reflective switch layer covering the process region has a temperature that corresponds to the temperature of the process region. The reflectivity of the reflectivity switch layer changes from a low reflectivity state to a high reflectivity state at a critical temperature so as to limit the amount of radiation absorbed by the absorber layer by reflecting the incident radiation. This, in turn, limits the amount of heat transferred to the process region from the absorber layer.
    • 一种用于通过使用热诱导反射率开关层(60)从激光辐射(10)曝光来控制传送到工件(W)的处理区域(30)的热量的方法,装置和系统。 本发明的装置是具有沉积在工件上方的诸如硅晶片的吸收层(50)的薄膜叠层(6)。 吸收层的一部分覆盖工艺区域。 吸收层吸收激光辐射并将吸收的辐射转化成热。 反射开关层(60)沉积在吸收层顶部。 反射开关层可以包括一个或多个薄膜层,并且优选地包括热绝缘体层和过渡层。 覆盖处理区域的反射开关层的部分具有对应于处理区域的温度的温度。 反射率开关层的反射率在临界温度从低反射率状态变为高反射率状态,以通过反射入射辐射来限制吸收层吸收的辐射量。 这反过来限制了从吸收层传递到处理区域的热量。
    • 7. 发明授权
    • Method of forming a silicide region in a Si substrate and a device having same
    • 在Si衬底中形成硅化物区域的方法和具有该硅化物区域的器件
    • US06274488B1
    • 2001-08-14
    • US09547836
    • 2000-04-12
    • Somit TalwarYun Wang
    • Somit TalwarYun Wang
    • H01L2144
    • H01L21/28518
    • A method of forming a silicide region (80) on a Si substrate (10) in the manufacturing of semiconductor integrated devices, a method of forming a semiconductor device (MISFET), and a device having suicide regions formed by the present method. The method of forming a silicide region involves forming a silicide region (80) in the (crystalline) Si substrate having an upper surface (12) and a lower surface (14). The method comprises the steps of first forming an amorphous doped region (40) in the Si substrate at or near the upper surface, to a predetermined depth (d). This results in the formation of an amorphous-crystalline interface (I) between the amorphous doped region and the crystalline Si substrate. The next step is forming a metal layer (60) atop the Si substrate upper surface, in contact with the amorphous doped region. The next step involves performing backside irradiation with a first radiation beam (66). This heats the interface sufficient to initiate explosive recrystallization (XRC) of amorphous doped region. This, in turn, provides heat to the metal layer sufficient to cause the diffusion of metal atoms from the metal layer into the amorphous doped region. In this manner, a silicide region of very high quality and low sheet resistance is formed in the Si substrate.
    • 在半导体集成器件的制造中,在Si衬底(10)上形成硅化物区域(80)的方法,形成半导体器件(MISFET)的方法以及通过本方法形成的具有硅化物区域的器件。 形成硅化物区域的方法包括在具有上表面(12)和下表面(14)的(晶体)Si衬底中形成硅化物区域(80)。 该方法包括以下步骤:首先在Si衬底中或在上表面附近形成非晶态掺杂区(40)至预定深度(d)。 这导致在非晶掺杂区域和晶体Si衬底之间形成非晶态界面(I)。 下一步是在Si衬底上表面上形成与非晶掺杂区接触的金属层(60)。 下一步涉及用第一辐射束(66)进行背面照射。 这加热了足以引发非晶掺杂区域的爆炸重结晶(XRC)的界面。 这反过来又向金属层提供足以使金属原子从金属层扩散到非晶掺杂区域中的热量。 以这种方式,在Si衬底中形成具有非常高质量和低薄层电阻的硅化物区域。
    • 8. 发明授权
    • Selective absorption process for forming an activated doped region in a semiconductor
    • 用于在半导体中形成激活的掺杂区域的选择性吸收工艺
    • US06645838B1
    • 2003-11-11
    • US10122955
    • 2002-04-11
    • Somit TalwarYun WangMichael O. Thompson
    • Somit TalwarYun WangMichael O. Thompson
    • H01L21425
    • H01L21/268H01L21/26506H01L21/26513H01L21/324
    • A process for activating a doped region (80) or amorphized doped region (34) in a semiconductor substrate (10). The process includes the steps of doping a region of the semiconductor substrate, wherein the region is crystalline or previously amorphized. The next step is forming a conformal layer (40) atop the upper surface (11) of the substrate. The next step is performing at least one of front-side and backside irradiation of the substrate to activate the doped region. The activation may be achieved by heating the doped region to just below the melting point of the doped region, or by melting the doped region but not the crystalline substrate. An alternative process includes the additional step of forming the doped region (amorphized or unamorphized) within or adjacent a deep dopant region (60) and providing sufficient heat to the deep dopant region through at least one of front-side and backside irradiation so that the doped region is activated through explosive recrystallization.
    • 一种用于激活半导体衬底(10)中的掺杂区(80)或非晶化掺杂区(34)的工艺。 该方法包括以下步骤:掺杂半导体衬底的区域,其中该区域是结晶或以前非晶化的。 下一步骤是在衬底的上表面(11)的顶部上形成共形层(40)。 下一步是执行衬底的前侧和背面照射中的至少一个以激活掺杂区域。 激活可以通过将掺杂区域加热到刚好低于掺杂区域的熔点,或者通过熔化掺杂区域而不是结晶衬底来实现。 替代方法包括在深掺杂剂区域(60)内或邻近深掺杂区域(60)形成掺杂区域(非晶化或未变形)的附加步骤,并且通过前侧和后侧照射中的至少一个向深掺杂剂区域提供足够的热量, 掺杂区域通过爆炸重结晶活化。
    • 9. 发明授权
    • Illumination fluence regulation system and method for use in thermal processing employed in the fabrication of reduced-dimension integrated circuits
    • 用于制造低维集成电路的热处理中的照明能量调节系统和方法
    • US06570656B1
    • 2003-05-27
    • US09546114
    • 2000-04-10
    • James B. Owens, Jr.Somit TalwarAndrew M. HawrylukYun Wang
    • James B. Owens, Jr.Somit TalwarAndrew M. HawrylukYun Wang
    • G03G1508
    • B23K26/0006B23K2101/40B23K2103/56
    • The closed loop embodiment includes a pulsed laser controller to selectively operate a pulsed laser in a lower-power probe mode or a higher power operational mode. In lower-power probe mode, values of eT (total radiation energy flooding ICs on a silicon wafer), er (fraction of eT specularly reflected), es (fraction of eT scattered) and es (fraction of eT transmitted through wafer) are obtained. A value for ea (fraction of eT absorbed wafer) is calculated i.e. ea=eT−(er+es+et), and ea used by pulsed laser controller with pulsed laser in higher power operational mode to adjust pulsed laser fluence over the duration of a pulse to provide flooding radiation energy sufficient to melt an amorphized silicon surface layer beneath radiation-absorbent material, yet insufficient to melt crystalline silicon or ablate radiation-absorbent material. Open loop embodiment substitutes a separate low-power probe laser for operation in lower-power probe mode.
    • 闭环实施例包括脉冲激光控制器,以选择性地操作低功率探测模式或较高功率操作模式的脉冲激光。 在低功率探测模式下,获得eT(硅晶片上的总辐射能量驱动IC),er(eT镜面反射的分数),es(eT散射的分数)和es(通过晶片传输的eT的分数)的值 。 计算ea(eT吸收晶片的分数)的值,即ea = eT-(er + es + et),以及脉冲激光控制器在较高功率操作模式下使用脉冲激光控制器的ea,以调整脉冲激光注量 提供足以熔化放射线吸收材料下面的非晶硅表面层的淹没辐射能量的脉冲,但不足以熔化晶体硅或消融辐射吸收材料。 开环实施例将单独的低功率探头激光器替代为在较低功率探测模式下操作。
    • 10. 发明授权
    • Method of forming a silicide region in a Si substrate and a device having same
    • 在Si衬底中形成硅化物区域的方法和具有该硅化物区域的器件
    • US06420264B1
    • 2002-07-16
    • US09896160
    • 2001-06-28
    • Somit TalwarYun Wang
    • Somit TalwarYun Wang
    • H01L2144
    • H01L21/28518
    • A method of forming a silicide region (80) on a Si substrate (10) in the manufacturing of semiconductor integrated devices, a method of forming a semiconductor device (MISFET), and a device having suicide regions formed by the present method. The method of forming a suicide region involves forming a silicide region (80) in the (crystalline) Si substrate having an upper surface (12) and a lower surface (14). The method comprises the steps of first forming an amorphous doped region (40) in the Si substrate at or near the upper surface, to a predetermined depth (d). This results in the formation of an amorphous-crystalline interface (I) between the amorphous doped region and the crystalline Si substrate. The next step is forming a metal layer (60) atop the Si substrate upper surface, in contact with the amorphous doped region. The next step involves performing backside irradiation with a first radiation beam (66). This heats the interface sufficient to initiate explosive recrystallization (XRC) of amorphous doped region. This, in turn, provides heat to the metal layer sufficient to cause the diffusion of metal atoms from the metal layer into the amorphous doped region. In this manner, a silicide region of very high quality and low sheet resistance is formed in the Si substrate.
    • 在半导体集成器件的制造中,在Si衬底(10)上形成硅化物区域(80)的方法,形成半导体器件(MISFET)的方法以及通过本方法形成的具有硅化物区域的器件。 形成硅化物区域的方法包括在具有上表面(12)和下表面(14)的(晶体)Si衬底中形成硅化物区域(80)。 该方法包括以下步骤:首先在Si衬底中或在上表面附近形成非晶态掺杂区(40)至预定深度(d)。 这导致在非晶掺杂区域和晶体Si衬底之间形成非晶态界面(I)。 下一步是在Si衬底上表面上形成与非晶掺杂区接触的金属层(60)。 下一步涉及用第一辐射束(66)进行背面照射。 这加热了足以引发非晶掺杂区域的爆炸重结晶(XRC)的界面。 这反过来又向金属层提供足以使金属原子从金属层扩散到非晶掺杂区域中的热量。 以这种方式,在Si衬底中形成具有非常高质量和低薄层电阻的硅化物区域。