会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明申请
    • BUILT-IN NON-VERBAL INSTRUCTIONAL DEVICE INTEGRATABLE TO APPLICATORS
    • 内置非VERBAL指令设备,可与应用程序集成
    • US20130053752A1
    • 2013-02-28
    • US13634815
    • 2010-03-17
    • Bai Xu
    • Bai Xu
    • G09B23/28A61M35/00A61B19/02A61M5/32
    • A61M37/0015A61B17/205A61B50/20A61B50/30A61B2017/00115A61B2090/065A61B2090/0803A61K9/0021A61K9/06A61M2037/0023A61M2205/276A61M2205/581A61M2205/582A61M2205/583
    • A built-in non-verbal compact instructional device integratable to an applicator having a microdevice for painlessly perforating skin and optionally an active agent for application to the perforated area. The microdevice can include microneedles, microneedle arrays, microblades, microblade arrays, microknives, microknife arrays, and Functional MicroArrays (FMAs). The active agent can be stored in a first chamber. The microdevice can perforate stratum corneum without significant pain or discomfort to a patient. The active agent is applied to the perforated area. The device verifies compliance with predetermined methods of use, such as a light to indicate application with the recommended amount of force for perforating skin. The applicator can provide enhanced delivery of an active agent, with minimal discomfort, for therapeutic or cosmetic treatment, such as topical treatment for acne, or other skin disorders, wrinkles, blemishes, etc. The applicator is also useful for providing improved systemic or localized delivery of an active agent.
    • 一种内置的非言语紧凑教学装置,可与具有用于无痛穿孔皮肤的微型装置和可选地用于穿孔区域的活性剂的涂抹器集成。 微型设备可以包括微针,微针阵列,微刀片,微刃阵列,微刀,微刀阵列和功能微阵列(FMA)。 活性剂可以储存在第一室中。 微型装置可以穿透角质层,而不会对患者造成明显的疼痛或不适。 将活性剂施加到穿孔区域。 该装置验证与预定使用方法的一致性,例如用于指示用于穿透皮肤的推荐的力量的应用的光。 施用者可以提供增强的活性剂递送,具有最小的不适,用于治疗或美容治疗,例如痤疮的局部治疗或其它皮肤病症,皱纹,瑕疵等。施用器也可用于提供改进的全身或局部 递送活性剂。
    • 9. 发明授权
    • Hybrid solar cells based on nanostructured semiconductors and organic materials
    • 基于纳米结构半导体和有机材料的混合太阳能电池
    • US07618838B2
    • 2009-11-17
    • US11410796
    • 2006-04-25
    • Igor A. LevitskyWilliam B. EulerNatalya A. TokranovaBai XuJames Castracane
    • Igor A. LevitskyWilliam B. EulerNatalya A. TokranovaBai XuJames Castracane
    • H01L51/48H01L31/00
    • H01L51/4213H01L51/0037H01L51/0078H01L51/4253Y02E10/549
    • A method for forming a photovoltaic cell which includes forming a nanostructured layer in a semiconductor material having a plurality of pores opening onto a surface, the plurality of pores having a depth greater than about 1 micron and a diameter between about 5 nanometers and about 1,200 nanometers, and disposing an organic charge-transfer material in the pores of the nanostructured layer. A first electrode is attached to the semiconductor material, and a second electrode is attached to the organic charge-transfer material. The semiconductor material has a thickness between about 5 microns and about 700 microns. Desirably, the nanostructured layer has a porosity of less than the porosity corresponding to the percolation threshold, and the organic charge-transfer material extends at least about 100 nm from the surface of the nanostructured layer. The organic charge-transfer material may partially cover the sides of the pores of the nanostructured layer thereby providing a generally cylindrical cavity therein.
    • 一种形成光伏电池的方法,包括在半导体材料中形成纳米结构层,所述半导体材料具有在表面上开口的多个孔,所述多个孔的深度大于约1微米,直径在约5纳米至约1,200纳米 并且在纳米结构层的孔中设置有机电荷转移材料。 第一电极附接到半导体材料,第二电极附着到有机电荷转移材料上。 半导体材料具有约5微米至约700微米的厚度。 期望地,纳米结构层具有小于对应于渗滤阈值的孔隙率的孔隙率,并且有机电荷转移材料从纳米结构层的表面延伸至少约100nm。 有机电荷转移材料可以部分地覆盖纳米结构层的孔的侧面,从而在其中提供大致圆柱形的空腔。