会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Preparation method of selective growth silicon layer doped with
impurities
    • 选择性生长硅掺杂杂质的方法
    • US5004702A
    • 1991-04-02
    • US338794
    • 1989-04-17
    • Shuichi SamataYoshiaki Matsushita
    • Shuichi SamataYoshiaki Matsushita
    • H01L21/225H01L21/285H01L21/8238
    • H01L21/28525H01L21/2257H01L21/823814
    • A semiconductor substrate having a surface region of P type and a surface region of N type is formed, then an insulating membrane is formed on the semiconductor substrate. The first contact hole which is formed in said region of P type and the second contact hole which is connected to said region of N type are formed by the same process as that for said insulating membrane. Non-doped silicon layer is grown in said first and second contact holes by the same selective growth process, in a single reactive furnace. A diffusion source layer containing impurities of P type is formed on said first contact hole and a diffusion source layer containing impurities of N type on said second contact hole. Impurities are diffused from said diffusion layers to said silicon layers, and said diffusion source layer is then removed. A metal wire layer is formed by connecting it to said silicon layer.
    • 形成具有P型表面区域和N型表面区域的半导体衬底,然后在半导体衬底上形成绝缘膜。 在所述P型区域中形成的第一接触孔和与所述N型区域连接的第二接触孔通过与所述绝缘膜相同的工艺形成。 在单个反应炉中,非掺杂硅层通过相同的选择性生长工艺在所述第一和第二接触孔中生长。 在所述第一接触孔上形成含有P型杂质的扩散源层和在所述第二接触孔上含有N型杂质的扩散源层。 杂质从所述扩散层扩散到所述硅层,然后去除所述扩散源层。 通过将金属线层连接到所述硅层而形成金属线层。
    • 6. 发明授权
    • Vapor phase epitaxial growth apparatus
    • 气相外延生长装置
    • US5246500A
    • 1993-09-21
    • US937743
    • 1992-09-01
    • Shuichi SamataYoshiaki Matsushita
    • Shuichi SamataYoshiaki Matsushita
    • C30B25/10C23C16/455C30B25/14H01L21/00H01L21/205
    • H01L21/67115C23C16/455C30B25/14
    • A vapor phase growth apparatus is disclosed, which comprises a boat accommodating therein a plurality of semiconductor substrates, an inner tube surrounding the boat, an outer tube disposed outside the inner tube, a heater disposed outside the outer tube, a reaction gas injection nozzle disposed inside the inner tube and operating to eject a reaction gas against the semiconductor substrates, and a hydrogen halide gas injection nozzle disposed between the inner tube and the outer tube and operating to inject the hydrogen halide gas, wherein exhaust openings for exhausting the reaction gas are formed through a wall of the inner tube, thereby suppressing deposition of a reactant on an outer surface of the inner tube and an inner surface of the outer tube. The reaction gas injected from the reaction gas injection nozzle flows in the portion formed between the inner tube and the outer tube along with in the inner tube. Since the portion between the inner tube and the outer tube is heated by the heater disposed outside the outer tube, a reactant tends to be deposited on the outer surface of the inner tube and the inner surface of the outer tube. By injecting the hydrogen halide gas from the hydrogen halide gas injection nozzle to the portion formed between the inner tube and the outer tube, the deposition of the reactant can be suppressed.
    • 公开了一种气相生长装置,其包括容纳多个半导体衬底的舟皿,围绕舟皿的内管,设置在内管外部的外管,设置在外管外部的加热器,设置在反应气体注入喷嘴 在内管内部并且操作以将反应气体喷射到半导体基板上;以及卤化氢气体注入喷嘴,其设置在内管和外管之间并且操作以喷射卤化氢气体,其中用于排出反应气体的排气口为 通过内管的壁形成,从而抑制反应物沉积在内管的外表面和外管的内表面上。 从反应气体喷射喷嘴喷射的反应气体与内管一起流入形成在内管和外管之间的部分。 由于内管和外管之间的部分被设置在外管外部的加热器加热,反应物倾向于沉积在内管的外表面和外管的内表面上。 通过将卤化氢气体从卤化氢气体注入喷嘴注入到形成在内管和外管之间的部分,可以抑制反应物的沉积。