会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • MOCVD of tungsten nitride thin films using W(CO)6 and NH3 for copper barrier applications
    • 使用W(CO)6和NH3作为铜屏障应用的氮化钨薄膜的MOCVD
    • US07094691B2
    • 2006-08-22
    • US10410029
    • 2003-04-09
    • Wei PanRobert BarrowcliffDavid R. EvansSheng Teng Hsu
    • Wei PanRobert BarrowcliffDavid R. EvansSheng Teng Hsu
    • H01L21/44
    • H01L21/76841C23C16/34
    • A method of forming a tungsten nitride thin film in an integrated circuit includes preparing a silicon substrate on a silicon wafer and placing the silicon wafer in a heatable chuck in a CVD vacuum chamber; placing a known quantity of a tungsten source in a variable-temperature bubbler to provide a gaseous tungsten source; setting the variable-temperature bubbler to a predetermined temperature; passing a carrier gas through the variable-temperature bubbler and carrying the gaseous tungsten source with the carrier gas into the CVD vacuum chamber; introducing a nitrogen-containing reactant gas into the CVD vacuum chamber; reacting the gaseous tungsten source and the nitrogen-containing reactant gas above the surface of the silicon wafer in a deposition process to deposit a WxNy thin film on the surface of the silicon wafer; and completing the integrated circuit containing the WxNy thin film.
    • 在集成电路中形成氮化钨薄膜的方法包括在硅晶片上制备硅衬底,并将硅晶片放置在CVD真空室中的可加热卡盘中; 将已知量的钨源放置在可变温度起泡器中以提供气态钨源; 将可变温度起泡器设定到预定温度; 使载气通过可变温度起泡器并将载气的气态钨源运送到CVD真空室中; 将含氮反应气体引入CVD真空室中; 在沉积过程中使气态钨源和硅晶片表面上方的含氮反应物气体反应,以沉积W 1 / N 2 N 2 O 3 硅晶片; 并完成包含W< N> N> Y<<<<薄膜的集成电路。
    • 6. 发明申请
    • Nanorod sensor with single-plane electrodes
    • 具有单面电极的纳米棒传感器
    • US20080290431A1
    • 2008-11-27
    • US11805011
    • 2007-05-22
    • Fengyan ZhangBruce D. UlrichWei PanLawrence J. CharneskiSheng Teng Hsu
    • Fengyan ZhangBruce D. UlrichWei PanLawrence J. CharneskiSheng Teng Hsu
    • H01L29/84H01L21/20
    • G01N27/127B82Y10/00H01L29/0665H01L29/0673H01L29/0676H01L29/41
    • A nanorod sensor with a single plane of horizontally-aligned electrodes and an associated fabrication method are provided. The method provides a substrate and forms an intermediate electrode overlying a center region of the substrate. The intermediate electrode is a patterned bottom noble metal/Pt/Ti multilayered stack. TiO2 nanorods are formed over the substrate and intermediate electrode, and a TiO2 film may be formed overlying the TiO2 nanorods. The TiO2 nanorods and TiO2 film are formed in-situ, in the same process, by varying the substrate temperature. In other aspects, the TiO2 film is formed between the nanorods and the intermediate electrode. In yet another aspect, the TiO2 film is formed both above and below the nanorods. A single plane of top electrodes is formed overlying the TiO2 film from a top noble metal/Pt/Ti multilayered stack overlying the TiO2 film, which has been selectively etched to form separate top electrodes.
    • 提供了具有水平对准电极的单个平面的纳米棒传感器和相关联的制造方法。 该方法提供了一个衬底,并形成了覆盖衬底中心区域的中间电极。 中间电极是图案化的底部贵金属/ Pt / Ti多层叠层。 在衬底和中间电极上形成TiO 2纳米棒,并且可以在TiO 2纳米棒上形成TiO 2膜。 通过改变衬底温度,在相同的工艺中原位形成TiO 2纳米棒和TiO 2膜。 在其他方面,在纳米棒和中间电极之间形成TiO 2膜。 在另一方面,在纳米棒上方和下方形成TiO 2膜。 顶层电极的单面由覆盖在TiO 2膜上的顶部贵金属/ Pt / Ti多层叠层覆盖在TiO 2膜上,该TiO 2膜被选择性地蚀刻以形成分离的顶电极。
    • 7. 发明授权
    • Methods of fabricating a cross-point resistor memory array
    • 制造交叉点电阻存储器阵列的方法
    • US06905937B2
    • 2005-06-14
    • US10391292
    • 2003-03-17
    • Sheng Teng HsuWei PanWei-Wei Zhuang
    • Sheng Teng HsuWei PanWei-Wei Zhuang
    • G11C11/15G11C11/56G11C13/00H01L27/24H01L21/20
    • G11C11/15G11C11/5685G11C13/0007G11C13/004G11C2213/31G11C2213/77H01L27/24
    • Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions. The resistive cross-point memory device is formed by doping lines within a substrate one polarity, and then doping regions of the lines the opposite polarity to form diodes. Bottom electrodes are then formed over the diodes with a layer of resistive memory material overlying the bottom electrodes. Top electrodes may then be added at an angled to form a cross-point array defined by the lines and the top electrodes.
    • 提供了电阻式交叉点存储器件,以及制造和使用方法。 存储器件由介于上电极和下电极之间的电阻存储器材料的有源层组成。 在上电极和下电极的交叉点处位于电阻性存储器材料内的位区域具有响应于施加一个或更多个电压脉冲而能够在一定范围内变化的电阻率。 可以使用电压脉冲来增加比特区域的电阻率,降低比特区域的电阻率,或者确定比特区域的电阻率。 在电阻性存储器材料和下电极之间的界面处形成二极管,其可以形成为掺杂区域。 电阻性交叉点存储器件通过在衬底内掺杂一个极性而形成,然后将相反极性的线的掺杂区域形成二极管。 然后在二极管上形成一层电阻记忆材料覆盖底部电极的底部电极。 然后可以以倾斜的角度添加顶部电极以形成由线和顶部电极限定的交叉点阵列。
    • 8. 发明授权
    • Methods of fabricating trench isolated cross-point memory array
    • 制造沟槽隔离交叉点存储器阵列的方法
    • US06825058B2
    • 2004-11-30
    • US10391290
    • 2003-03-17
    • Sheng Teng HsuWei PanWei-Wei Zhuang
    • Sheng Teng HsuWei PanWei-Wei Zhuang
    • H01L2100
    • G11C11/15G11C11/5685G11C13/0007G11C13/004G11C2213/31G11C2213/72G11C2213/77H01L27/24
    • Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions, isolated from each other by shallow trench isolation. The resistive cross-point memory device is formed by doping lines, which are separated from each other by shallow trench isolation, within a substrate one polarity, and then doping regions of the lines the opposite polarity to form diodes. Bottom electrodes are then formed over the diodes with a layer of resistive memory material overlying the bottom electrodes. Top electrodes may then be added at an angled to form a cross-point array defined by the lines and the top electrodes.
    • 提供了电阻式交叉点存储器件,以及制造和使用方法。 存储器件由介于上电极和下电极之间的电阻存储器材料的有源层组成。 在上电极和下电极的交叉点处位于电阻性存储器材料内的位区域具有响应于施加一个或更多个电压脉冲而能够在一定范围内变化的电阻率。 可以使用电压脉冲来增加比特区域的电阻率,降低比特区域的电阻率,或者确定比特区域的电阻率。 在电阻性存储器材料和下部电极之间的界面处形成二极管,其可以形成为通过浅沟槽隔离彼此隔离的掺杂区域。 电阻交叉点存储器件通过在衬底内通过浅沟槽隔离彼此分离的线路形成一个极性,然后将相反极性的线的掺杂区域形成二极管形成。 然后在二极管上形成一层电阻记忆材料覆盖底部电极的底部电极。 然后可以以倾斜的角度添加顶部电极以形成由线和顶部电极限定的交叉点阵列。
    • 10. 发明授权
    • Nano-scale resistance cross-point memory array
    • 纳米级电阻交叉点存储阵列
    • US06774004B1
    • 2004-08-10
    • US10391357
    • 2003-03-17
    • Sheng Teng HsuWei-Wei ZhuangWei PanFengyan Zhang
    • Sheng Teng HsuWei-Wei ZhuangWei PanFengyan Zhang
    • H01L2120
    • G11C13/0007G11C2213/31G11C2213/77H01L27/2409H01L27/2463H01L45/04H01L45/1233H01L45/147H01L45/1683
    • A method of fabricating a nano-scale resistance cross-point memory array includes preparing a silicon substrate; depositing silicon oxide on the substrate to a predetermined thickness; forming a nano-scale trench in the silicon oxide; depositing a first connection line in the trench; depositing a memory resistor layer in the trench on the first connection line; depositing a second connection line in the trench on the memory resistor layer; and completing the memory array. A cross-point memory array includes a silicon substrate; a first connection line formed on the substrate; a colossal magnetoresistive layer formed on the first connection line; a silicon nitride layer formed on a portion of the colossal magnetoresistive layer; and a second connection line formed adjacent the silicon nitride layer and on the colossal magnetoresistive layer.
    • 制造纳米尺度电阻交叉点存储器阵列的方法包括制备硅衬底; 在衬底上沉积氧化硅至预定厚度; 在氧化硅中形成纳米尺度的沟槽; 在沟槽中沉积第一连接线; 在第一连接线上的沟槽中沉积记忆电阻层; 在所述存储器电阻层的沟槽中沉积第二连接线; 并完成内存阵列。 交叉点存储器阵列包括硅衬底; 形成在所述基板上的第一连接线; 形成在第一连接线上的巨大的磁阻层; 形成在巨磁阻层的一部分上的氮化硅层; 以及与氮化硅层和巨磁阻层相邻形成的第二连接线。