会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Process to produce ultrathin crystalline silicon nitride on Si (111) for advanced gate dielectrics
    • US06420729B1
    • 2002-07-16
    • US09747966
    • 2000-12-27
    • Robert M. WallaceGlen D. WilkYi WeiSunil V. Hattangady
    • Robert M. WallaceGlen D. WilkYi WeiSunil V. Hattangady
    • H01L2904
    • A method of making a semiconductor device and the device. The device, according to a first embodiment, is fabricated by providing a silicon (111) surface, forming on the surface a dielectric layer of crystalline silicon nitride and forming an electrode layer on the dielectric layer of silicon nitride. The silicon (111) surface is cleaned and made atomically flat. The dielectric layer if formed of crystalline silicon nitride by placing the surface in an ammonia ambient at a pressure of from about 1×10−7 to about 1×10−5 Torr at a temperature of from about 850° C. to about 1000° C. The electrode layer is heavily doped silicon. According to a second embodiment, there is provided a silicon (111) surface on which is formed a first dielectric layer of crystalline silicon nitride having a thickness of about 2 monolayers. A second dielectric layer compatible with silicon nitride and having a higher dielectric constant than silicon nitride is formed on the first dielectric layer and an electrode layer is formed over the second dielectric layer. A third dielectric layer of silicon nitride having a thickness of about 2 monolayers can be formed between the second dielectric layer and the electrode layer. The second dielectric layer is preferably taken from the class consisting of tantalum pentoxide, titanium dioxide and a perovskite material. Both silicon nitride layers can be formed as in the first embodiment. The electrode layer is preferably heavily doped silicon
    • 5. 发明授权
    • Process to produce ultrathin crystalline silicon nitride on Si(111) for advanced gate dielectrics
    • 在Si(111)上生产用于先进栅极电介质的超薄晶体氮化硅的工艺
    • US06277681B1
    • 2001-08-21
    • US09270173
    • 1999-03-16
    • Robert M. WallaceGlen D. WilkYi WeiSunil V. Hattangady
    • Robert M. WallaceGlen D. WilkYi WeiSunil V. Hattangady
    • H01L218234
    • H01L29/513H01L21/28167H01L21/28194H01L21/28202H01L21/3185H01L27/1085H01L29/517H01L29/518H01L29/66181
    • A method of making a semiconductor device and the device. The device, according to a first embodiment, is fabricated by providing a silicon (111) surface, forming on the surface a dielectric layer of crystalline silicon nitride and forming an electrode layer on the dielectric layer of silicon nitride. The silicon (111) surface is cleaned and made atomically flat. The dielectric layer if formed of crystalline silicon nitride by placing the surface in an ammonia ambient at a pressure of from about 1×10−7 to about 1×10−5 Torr at a temperature of from about 850° C. to about 1000° C. The electrode layer is heavily doped silicon. According to a second embodiment, there is provided a silicon (111) surface on which is formed a first dielectric layer of crystalline silicon nitride having a thickness of about 2 monolayers. A second dielectric layer compatible with silicon nitride and having a higher dielectric constant than silicon nitride is formed on the first dielectric layer and an electrode layer is formed over the second dielectric layer. A third dielectric layer of silicon nitride having a thickness of about 2 monolayers can be formed between the second dielectric layer and the electrode layer. The second dielectric layer is preferably taken from the class consisting of tantalum pentoxide, titanium dioxide and a perovskite material. Both silicon nitride layers can be formed as in the first embodiment.
    • 制造半导体器件和器件的方法。 根据第一实施例的器件通过提供硅(111)表面来制造,在表面上形成结晶氮化硅的介电层并在氮化硅的介电层上形成电极层。 硅(111)表面被清洁并且原子地平坦。 如果由晶体氮化硅形成的电介质层,通过将表面放置在大约1×10-7至1×10-5乇的压力下,在大约850℃至大约1000℃的温度下。 层是重掺杂硅。 根据第二实施例,提供了一种硅(111)表面,在其上形成具有约2个单层厚度的结晶氮化硅的第一介电层。 与氮化硅相容并且具有比氮化硅更高的介电常数的第二电介质层形成在第一电介质层上,并且在第二电介质层上形成电极层。 可以在第二介电层和电极层之间形成具有约2个单层厚度的氮化硅的第三介电层。 第二电介质层优选取自五氧化二钽,二氧化钛和钙钛矿型材料。 可以如第一实施例那样形成氮化硅层。
    • 7. 发明授权
    • Method for thin film deposition on single-crystal semiconductor substrates
    • 在单晶半导体衬底上薄膜沉积的方法
    • US06258637B1
    • 2001-07-10
    • US09452922
    • 1999-12-02
    • Glen D. WilkYi WeiRobert M. Wallace
    • Glen D. WilkYi WeiRobert M. Wallace
    • H01L2100
    • H01L21/02043H01L21/02046H01L21/02238H01L21/02255H01L21/02301H01L21/02312H01L21/02381H01L21/02532H01L21/0262H01L21/31662Y10S438/974
    • A method of preparing a surface for and forming a thin film on a single-crystal silicon substrate is disclosed. One embodiment of his method comprises forming an oxidized silicon layer (which may be a native oxide) on at least one region of the substrate, and thermally annealing the substrate in a vacuum while supplying a silicon-containing flux to the oxide surface, thus removing the oxidized silicon layer. Preferably, the thin film is formed immediately after removal of the oxidized silicon layer. The silicon-containing flux is preferably insufficient to deposit a silicon-containing layer on top of the oxidized silicon layer, and yet sufficient to substantially inhibit an SiO-forming reaction between the silicon substrate and the oxidized silicon layer. The method of the invention allows for growth or deposition of films which have exceptionally smooth interfaces (less than 0.1 nm rms roughness) with the underlying silicon substrate at temperatures less than 800° C., and is ideally suited for deposition of ultrathin films having thicknesses less than about 5 nm.
    • 公开了一种制备在单晶硅衬底上形成薄膜的表面的方法。 他的方法的一个实施方案包括在衬底的至少一个区域上形成氧化硅层(其可以是天然氧化物),并且在真空中对衬底进行热退火,同时向氧化物表面提供含硅助焊剂,从而除去 氧化硅层。 优选地,在去除氧化硅层之后立即形成薄膜。 含硅助焊剂优选不足以在氧化硅层的顶部上沉积含硅层,并且还足以基本上抑制硅衬底和氧化硅层之间的形成SiO的反应。 本发明的方法允许在低于800℃的温度下与底层硅衬底具有非常平滑的界面(小于0.1nm均方根粗糙度)的生长或沉积,并且理想地适用于沉积具有厚度的超薄膜 小于约5nm。
    • 8. 发明授权
    • Method of forming a nano-rugged silicon-containing layer
    • 形成纳米坚固的含硅层的方法
    • US06040230A
    • 2000-03-21
    • US39075
    • 1998-03-13
    • John Mark AnthonyRobert M. WallaceYi WeiGlen Wilk
    • John Mark AnthonyRobert M. WallaceYi WeiGlen Wilk
    • H01L21/02H01L21/20
    • H01L28/82
    • An embodiment of the instant invention is a method of forming a nano-rugged silicon-containing layer, the method comprising the steps of: providing a first silicon-containing layer (steps 202 or 802); providing a patterning layer over the first silicon-containing layer (steps 204 or 804); the patterning layer comprised of an amorphous substance; providing a second silicon-containing layer (steps 206 or 808) over the patterning layer; and wherein the patterning layer creates a nano-rugged texture in the second silicon-containing layer. Preferably, the first and second silicon-containing layers are comprised of polycrystalline silicon. In an alternative embodiment, the patterning layer is comprised of a material which has small holes such that the step of providing the second silicon-containing layer utilizes the first silicon-containing layer as a seed layer through the small holes so as to form the second silicon-containing layer. In another alternative embodiment, the second silicon-containing layer is comprised of a plurality of islands of the silicon-containing material separated by voids in the material. Preferably, the patterning layer is comprised of SiO.sub.2.
    • 本发明的一个实施方案是一种形成纳米坚固的含硅层的方法,所述方法包括以下步骤:提供第一含硅层(步骤202或802); 在第一含硅层上提供图形层(步骤204或804); 所述图案层由无定形物质构成; 在所述图案化层上提供第二含硅层(步骤206或808); 并且其中所述图案化层在所述第二含硅层中产生纳米坚固纹理。 优选地,第一和第二含硅层由多晶硅组成。 在替代实施例中,图案化层由具有小孔的材料构成,使得提供第二含硅层的步骤通过该小孔利用第一含硅层作为种子层,从而形成第二含硅层 含硅层。 在另一个替代实施例中,第二含硅层由多个岛状的含硅材料构成,该岛由材料中的空隙分开。 优选地,图案化层由SiO 2组成。
    • 9. 发明授权
    • Method for thin film deposition on single-crystal semiconductor
substrates
    • 在单晶半导体衬底上薄膜沉积的方法
    • US6020247A
    • 2000-02-01
    • US904009
    • 1997-07-31
    • Glen D. WilkYi WeiRobert M. Wallace
    • Glen D. WilkYi WeiRobert M. Wallace
    • H01L21/302H01L21/20H01L21/306H01L21/3065H01L21/31H01L21/316H01L21/469
    • H01L21/02043H01L21/02046H01L21/02238H01L21/02255H01L21/02301H01L21/02312H01L21/02381H01L21/02532H01L21/0262H01L21/31662Y10S438/974
    • A method of preparing a surface for and forming a thin film on a single-crystal silicon substrate is disclosed. One embodiment of his method comprises forming an oxidized silicon layer (which may be a native oxide) on at least one region of the substrate, and thermally annealing the substrate in a vacuum while supplying a silicon-containing flux to the oxide surface, thus removing the oxidized silicon layer. Preferably, the thin film is formed immediately after removal of the oxidized silicon layer. The silicon-containing flux is preferably insufficient to deposit a silicon-containing layer on top of the oxidized silicon layer, and yet sufficient to substantially inhibit an SiO-forming reaction between the silicon substrate and the oxidized silicon layer. The method of the invention allows for growth or deposition of films which have exceptionally smooth interfaces (less than 0.1 nm rms roughness) with the underlying silicon substrate at temperatures less than 800.degree. C., and is ideally suited for deposition of ultrathin films having thicknesses less than about 5 nm.
    • 公开了一种制备在单晶硅衬底上形成薄膜的表面的方法。 他的方法的一个实施方案包括在衬底的至少一个区域上形成氧化硅层(其可以是天然氧化物),并且在真空中对衬底进行热退火,同时向氧化物表面提供含硅助焊剂,从而除去 氧化硅层。 优选地,在去除氧化硅层之后立即形成薄膜。 含硅助焊剂优选不足以在氧化硅层的顶部上沉积含硅层,并且还足以基本上抑制硅衬底和氧化硅层之间的形成SiO的反应。 本发明的方法允许在低于800℃的温度下与下面的硅衬底具有非常平滑的界面(小于0.1nm均方根粗糙度)的生长或沉积,并且理想地适用于沉积具有厚度的超薄膜 小于约5nm。
    • 10. 发明授权
    • Synthesizing graphene from metal-carbon solutions using ion implantation
    • 使用离子注入合成来自金属 - 碳溶液的石墨烯
    • US08309438B2
    • 2012-11-13
    • US12706116
    • 2010-02-16
    • Luigi ColomboRobert M. WallaceRodney S. Ruoff
    • Luigi ColomboRobert M. WallaceRodney S. Ruoff
    • H01L21/20
    • H01L21/02612H01L21/02527
    • A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.
    • 一种使用碳的离子注入合成石墨烯的方法和半导体器件。 使用离子注入将碳注入金属中。 在碳分布在金属中之后,对金属进行退火和冷却,以便从金属沉淀碳以在金属表面上形成一层石墨烯。 然后将金属/石墨烯表面转移到电介质层,使得石墨烯层被放置在电介质层的顶部上。 然后去除金属层。 或者,凹陷区域被图案化并蚀刻在位于基底上的电介质层中。 金属后来形成在这些凹陷区域。 然后使用离子注入将碳注入到金属中。 然后可以对金属进行退火和冷却,以便从金属沉淀碳以在金属表面上形成一层石墨烯。