会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Method of forming an electronic device
    • 电子设备的形成方法
    • US20060223266A1
    • 2006-10-05
    • US11098874
    • 2005-04-05
    • Sangwoo LimPaul GrudowskiMohamad JahanbaniHsing TsengChoh-Fei Yeap
    • Sangwoo LimPaul GrudowskiMohamad JahanbaniHsing TsengChoh-Fei Yeap
    • H01L21/8234
    • H01L21/823462
    • A method of forming an electronic device includes etching a portion of a first gate dielectric layer to reduce a thickness of the gate dielectric layer within that portion. In one embodiment, portions not being etched may be covered by mask. In another embodiment, different portions may be etched during different times to give different thicknesses for the first gate dielectric layer. In a particular embodiment, a second gate dielectric layer may be formed over the first gate dielectric layer after etching the portion. The second gate dielectric layer can have a dielectric constant greater than the dielectric constant of the first gate dielectric layer. Subsequent gate electrode and source/drain region formation can be performed to form a transistor structure.
    • 一种形成电子器件的方法包括蚀刻第一栅极电介质层的一部分以减小该部分内的栅极电介质层的厚度。 在一个实施例中,未被蚀刻的部分可以被掩模覆盖。 在另一个实施例中,不同部分可以在不同时间被蚀刻,以给予第一栅极介电层不同的厚度。 在特定实施例中,可以在蚀刻该部分之后在第一栅极电介质层上形成第二栅极电介质层。 第二栅极介电层可以具有大于第一栅极介电层的介电常数的介电常数。 可以进行随后的栅电极和源/漏区形成以形成晶体管结构。
    • 6. 发明申请
    • Transistor sidewall spacer stress modulation
    • 晶体管侧壁间隔应力调制
    • US20050156237A1
    • 2005-07-21
    • US11036859
    • 2005-01-13
    • Paul Grudowski
    • Paul Grudowski
    • H01L21/265H01L21/336H01L21/8234H01L29/78
    • H01L29/66659H01L21/26586H01L21/823468H01L29/665H01L29/6656H01L29/6659H01L29/7833H01L29/7835H01L29/7842Y10S257/90
    • A semiconductor fabrication process and the resulting integrated circuit include forming a gate electrode (116) over a gate dielectric (104) over a semiconductor substrate (102). A spacer film (124) exhibiting a tensile stress characteristic is deposited over the gate electrode (116). The stress characteristics of at least a portion of the spacer film is then modulated (132, 192) and the spacer film (124) is etched to form sidewall spacers (160, 162) on the gate electrode sidewalls. The spacer film (124) is an LPCVD silicon nitride in one embodiment. Modulating (132) the spacer film (124) includes implanting Xenon or Germanium into the spacers (160) at an implant energy sufficient to break at least some of the silicon nitride bonds. The modulation implant (132) may be performed selectively or non-selectively either before or after etching the spacer film (124).
    • 半导体制造工艺和所得到的集成电路包括在半导体衬底(102)上方的栅电介质(104)上形成栅电极(116)。 表现出拉伸应力特性的间隔膜(124)沉积在栅电极(116)上。 然后对间隔膜的至少一部分的应力特性进行调制(132,192),并且蚀刻间隔膜(124)以在栅极电极侧壁上形成侧壁间隔物(160,162)。 在一个实施例中,间隔膜(124)是LPCVD氮化硅。 调节(132)间隔膜(124)包括以足以破坏至少一些氮化硅键的注入能量将氙或锗注入到间隔物(160)中。 调制植入物(132)可以在蚀刻间隔膜(124)之前或之后选择性地或非选择地进行。
    • 9. 发明申请
    • Semiconductor device having stressors and method for forming
    • 具有应力源的半导体器件及其形成方法
    • US20070132031A1
    • 2007-06-14
    • US11300091
    • 2005-12-14
    • Mehul ShroffPaul Grudowski
    • Mehul ShroffPaul Grudowski
    • H01L29/94
    • H01L29/7843H01L21/3185H01L21/76802H01L21/76829H01L21/823807H01L21/823864H01L21/823871H01L21/823878H01L21/84H01L27/1203
    • N channel and P channel transistors are enhanced by applying stressor layers of tensile and compressive, respectively, over them. A previously unknown problem was discovered concerning the two stressor layers, which both may conveniently be nitride but made somewhat differently. The two stressors have different etch rates which results in deleterious effects when etching a contact hole at the interface between the two stressors. A contact to a gate is often preferably half way between N and P channel transistors which is also the seemingly best location for the border between the two stressor layers. The contact etch at the border can result in pitting of the underlying gate structure or in residual nitride in the contact hole. Therefore, it has been found beneficial to ensure that each contact is at least some predetermined distance from the stressor of the opposite type from the one the contact is passing through.
    • 通过在其上分别施加拉伸和压缩的应力层来增强N沟道和P沟道晶体管。 发现关于两个应力层的以前未知的问题,这两个应力层都可以方便地是氮化的,但是略有不同。 两个应力源具有不同的蚀刻速率,这在蚀刻两个应力源之间的界面处的接触孔时会产生有害影响。 与栅极的接触通常优选在N沟道晶体管和P沟道晶体管之间,这也是两个应力层之间边界的看似最佳位置。 在边界处的接触蚀刻可导致底层栅极结构或接触孔中的残余氮化物的点蚀。 因此,已经发现有益的是确保每个接触件与来自接触件通过的相反类型的应力器至少一定的距离。
    • 10. 发明申请
    • Semiconductor process integrating source/drain stressors and interlevel dielectric layer stressors
    • 集成源极/漏极应力和半导体介电层应力的半导体工艺
    • US20070202651A1
    • 2007-08-30
    • US11361171
    • 2006-02-24
    • Da ZhangVance AdamsBich-Yen NguyenPaul Grudowski
    • Da ZhangVance AdamsBich-Yen NguyenPaul Grudowski
    • H01L21/336
    • H01L29/7846H01L29/165H01L29/66636H01L29/66772H01L29/7843H01L29/7848H01L29/78654
    • A semiconductor fabrication process includes forming isolation structures on either side of a transistor region, forming a gate structure overlying the transistor region, removing source/drain regions to form source/drain recesses, removing portions of the isolation structures to form recessed isolation structures, and filling the source/drain recesses with a source/drain stressor such as an epitaxially formed semiconductor. A lower surface of the source/drain recess is preferably deeper than an upper surface of the recessed isolation structure by approximately 10 to 30 nm. Filling the source/drain recesses may precede or follow forming the recessed isolation structures. An ILD stressor is then deposited over the transistor region such that the ILD stressor is adjacent to sidewalls of the source/drain structure thereby coupling the ILD stressor to the source/drain stressor. The ILD stressor is preferably compressive or tensile silicon nitride and the source/drain structure is preferably silicon germanium or silicon carbon.
    • 半导体制造工艺包括在晶体管区域的任一侧上形成隔离结构,形成覆盖晶体管区域的栅极结构,去除源极/漏极区域以形成源极/漏极凹部,去除隔离结构的部分以形成凹入的隔离结构;以及 用诸如外延形成的半导体的源极/漏极应力源填充源/漏极凹部。 源极/漏极凹部的下表面优选比凹入的隔离结构的上表面深大约10至30nm。 填充源极/漏极凹部可以在形成凹入的隔离结构之前或之后。 然后将ILD应激源沉积在晶体管区域上,使得ILD应力源与源极/漏极结构的侧壁相邻,从而将ILD应激源耦合到源极/漏极应力源。 ILD应力器优选为压缩或拉伸氮化硅,并且源极/漏极结构优选为硅锗或硅碳。