会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • AUTOMATIC DISPERSION EXTRACTION OF MULTIPLE TIME OVERLAPPED ACOUSTIC SIGNALS
    • 多时间叠加声音信号的自动分散提取
    • US20100157731A1
    • 2010-06-24
    • US12644862
    • 2009-12-22
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • G01V1/00
    • G01V1/50G01V1/30G01V1/307G01V2210/00
    • Slowness dispersion characteristics of multiple possibly interfering signals in broadband acoustic waves as received by an array of two or more sensors are extracted without using a physical model. The problem of dispersion extraction is mapped to the problem of reconstructing signals having a sparse representation in an appropriately chosen over-complete dictionary of basis elements. A sparsity penalized signal reconstruction algorithm is described where the sparsity constraints are implemented by imposing a l1 norm type penalty. The candidate modes that are extracted are consolidated by means of a clustering algorithm to extract phase and group slowness estimates at a number of frequencies which are then used to reconstruct the desired dispersion curves. These estimates can be further refined by building time domain propagators when signals are known to be time compact, such as by using the continuous wavelet transform.
    • 在不使用物理模型的情况下提取由两个或更多个传感器的阵列接收的宽带声波中的多个可能干扰信号的慢度色散特性。 色散提取的问题被映射到在基本元素的适当选择的过完整字典中重建具有稀疏表示的信号的问题。 描述了稀疏惩罚信号重建算法,其中稀疏约束通过施加l1范数类型惩罚来实现。 提取的候选模式通过聚类算法进行合并,以提取多个频率的相位和组慢度估计,然后用于重建所需的色散曲线。 当已知信号是时间紧凑的,例如通过使用连续小波变换,可以通过构建时域传播器来进一步改进这些估计。
    • 2. 发明申请
    • DISPERSION EXTRACTION FOR ACOUSTIC DATA USING TIME FREQUENCY ANALYSIS
    • 使用时频分析对声音数据进行分散提取
    • US20090067286A1
    • 2009-03-12
    • US11854405
    • 2007-09-12
    • Sandip BoseHenri Pierre ValeroShuchin Aeron
    • Sandip BoseHenri Pierre ValeroShuchin Aeron
    • G01V1/28
    • G01V1/48
    • This invention pertains to the extraction of the slowness dispersion characteristics of acoustic waves received by an array of two or more sensors by the application of a continuous wavelet transform on the received array waveforms (data). This produces a time-frequency map of the data for each sensor that facilitates the separation of the propagating components thereon. Two different methods are described to achieve the dispersion extraction by exploiting the time frequency localization of the propagating mode and the continuity of the dispersion curve as a function of frequency. The first method uses some features on the modulus map such as the peak to determine the time locus of the energy of each mode as a function of frequency. The second method uses a new modified Radon transform applied to the coefficients of the time frequency representation of the waveform traces received by the aforementioned sensors. Both methods are appropriate for automated extraction of the dispersion estimates from the data without the need for expert user input or supervision
    • 本发明涉及通过对接收到的阵列波形(数据)应用连续小波变换来提取由两个或更多个传感器阵列接收的声波的慢度色散特性。 这产生用于每个传感器的数据的时间 - 频率图,其有助于在其上分离传播部件。 描述了两种不同的方法来通过利用传播模式的时间频率定位和作为频率的函数的色散曲线的连续性来实现色散提取。 第一种方法使用诸如峰值的模态图上的一些特征来确定每种模式的能量的时间轨迹作为频率的函数。 第二种方法使用新的修改的Radon变换,其应用于由上述传感器接收的波形迹线的时间频率表示的系数。 这两种方法适用于从数据中自动提取色散估计值,而无需专家用户输入或监督
    • 3. 发明授权
    • Automatic dispersion extraction of multiple time overlapped acoustic signals
    • 多重重叠声信号的自动色散提取
    • US08339897B2
    • 2012-12-25
    • US12644862
    • 2009-12-22
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • G01V1/50
    • G01V1/50G01V1/30G01V1/307G01V2210/00
    • Slowness dispersion characteristics of multiple possibly interfering signals in broadband acoustic waves as received by an array of two or more sensors are extracted without using a physical model. The problem of dispersion extraction is mapped to the problem of reconstructing signals having a sparse representation in an appropriately chosen over-complete dictionary of basis elements. A sparsity penalized signal reconstruction algorithm is described where the sparsity constraints are implemented by imposing a l1 norm type penalty. The candidate modes that are extracted are consolidated by means of a clustering algorithm to extract phase and group slowness estimates at a number of frequencies which are then used to reconstruct the desired dispersion curves. These estimates can be further refined by building time domain propagators when signals are known to be time compact, such as by using the continuous wavelet transform.
    • 在不使用物理模型的情况下提取由两个或更多个传感器的阵列接收的宽带声波中的多个可能干扰信号的慢度色散特性。 色散提取的问题被映射到在基本元素的适当选择的过完整字典中重建具有稀疏表示的信号的问题。 描述了稀疏惩罚信号重建算法,其中稀疏约束通过施加l1范数类型惩罚来实现。 提取的候选模式通过聚类算法进行合并,以提取多个频率的相位和组慢度估计,然后用于重建所需的色散曲线。 当已知信号是时间紧凑的,例如通过使用连续小波变换,可以通过构建时域传播器来进一步改进这些估计。
    • 4. 发明授权
    • Dispersion extraction for acoustic data using time frequency analysis
    • 使用时频分析对声学数据进行色散提取
    • US07649805B2
    • 2010-01-19
    • US11854405
    • 2007-09-12
    • Sandip BoseHenri-Pierre ValeroShuchin Aeron
    • Sandip BoseHenri-Pierre ValeroShuchin Aeron
    • G01V1/00
    • G01V1/48
    • This invention pertains to the extraction of the slowness dispersion characteristics of acoustic waves received by an array of two or more sensors by the application of a continuous wavelet transform on the received array waveforms (data). This produces a time-frequency map of the data for each sensor that facilitates the separation of the propagating components thereon. Two different methods are described to achieve the dispersion extraction by exploiting the time frequency localization of the propagating mode and the continuity of the dispersion curve as a function of frequency. The first method uses some features on the modulus map such as the peak to determine the time locus of the energy of each mode as a function of frequency. The second method uses a new modified Radon transform applied to the coefficients of the time frequency representation of the waveform traces received by the aforementioned sensors. Both methods are appropriate for automated extraction of the dispersion estimates from the data without the need for expert user input or supervision.
    • 本发明涉及通过对接收到的阵列波形(数据)应用连续小波变换来提取由两个或更多个传感器的阵列接收的声波的慢度色散特性。 这产生用于每个传感器的数据的时间 - 频率图,其有助于在其上分离传播部件。 描述了两种不同的方法来通过利用传播模式的时间频率定位和作为频率的函数的色散曲线的连续性来实现色散提取。 第一种方法使用诸如峰值的模态图上的一些特征来确定每种模式的能量的时间轨迹作为频率的函数。 第二种方法使用新的修改的Radon变换,其应用于由上述传感器接收的波形迹线的时间频率表示的系数。 这两种方法适用于从数据中自动提取色散估计值,而无需专家用户输入或监督。
    • 8. 发明授权
    • Processing time series data embedded in high noise
    • 处理时间序列数据嵌入高噪声
    • US09334718B2
    • 2016-05-10
    • US12652405
    • 2010-01-05
    • Henri-Pierre ValeroSandip BoseQiuhua LiuRamachandra ShenoyAbderrhamane Ounadjela
    • Henri-Pierre ValeroSandip BoseQiuhua LiuRamachandra ShenoyAbderrhamane Ounadjela
    • G01V1/40E21B43/26G01V1/28
    • E21B43/26G01V1/288G01V2210/123
    • Automatic detection and accurate time picking of weak events embedded in strong noise such as microseismicity induced by hydraulic fracturing is accomplished by: a noise reduction step to separate out the noise and estimate its spectrum; an events detection and confidence indicator step, in which a new statistical test is applied to detect which time windows contain coherent arrivals across components and sensors in the multicomponent array and to indicate the confidence in this detection; and a time-picking step to accurately estimate the time of onset of the arrivals detected above and measure the time delay across the array using a hybrid beamforming method incorporating the use of higher order statistics. In the context of hydraulic fracturing, this could enhance the coverage and mapping of the fractures while also enabling monitoring from the treatment well itself where there is usually much higher and spatially correlated noise.
    • 自动检测和精确时间采集嵌入强噪声(如水力压裂引起的微震)的弱事件是通过以下方式实现的:通过降噪步骤分离噪声并估计其频谱; 事件检测和置信指标步骤,其中应用新的统计测试以检测哪个时间窗口包含多组件阵列中的组件和传感器之间的相干到达,并指示该检测的置信度; 以及精确估计上述检测到达时间的时间选择步骤,并且使用结合使用更高阶统计量的混合波束成形方法来测量阵列上的时间延迟。 在水力压裂的背景下,这可以增强裂缝的覆盖和映射,同时还能够从处理井本身进行监测,其中通常有更高的空间相关噪声。
    • 9. 发明授权
    • Systems, methods, and apparatus to drive reactive loads
    • 用于驱动无功负载的系统,方法和装置
    • US08630148B2
    • 2014-01-14
    • US13152189
    • 2011-06-02
    • Abderrhamane OunadjelaJacques JundtOlivier MoyalHenri-Pierre ValeroSandip Bose
    • Abderrhamane OunadjelaJacques JundtOlivier MoyalHenri-Pierre ValeroSandip Bose
    • H04B11/00
    • H02M3/1563E21B47/00G01V1/159G01V1/42H04B11/00
    • Systems, methods, and apparatus to drive reactive loads are disclosed. An example apparatus to drive a reactive load includes a reactive component in circuit with the reactive load, a first switching element in circuit with the reactive load to selectively hold the reactive load in a first energy state and to selectively allow the reactive load to change from the first energy state to a second energy state, a second switching element in circuit with the reactive load to selectively hold the reactive load in the second energy state and to selectively allow the reactive load to change from the second energy state to the first energy state, and a controller to detect a current in the reactive load, and to control the first and second switching elements to hold the reactive load in the first or the second energy state when the current traverses a threshold.
    • 公开了用于驱动无功负载的系统,方法和装置。 驱动无功负载的示例性装置包括具有无功负载的电路中的无功分量,具有无功负载的电路中的第一开关元件,以选择性地将无功负载保持在第一能量状态并且选择性地允许无功负载从 第一能量状态到第二能量状态,第二开关元件在电路中具有无功负载以选择性地将无功负载保持在第二能量状态,并且选择性地允许无功负载从第二能量状态改变到第一能量状态 以及控制器,用于检测无功负载中的电流,并且当电流横穿阈值时,控制第一和第二开关元件将无功负载保持在第一或第二能量状态。
    • 10. 发明申请
    • PROCESSING TIME SERIES DATA EMBEDDED IN HIGH NOISE
    • 处理时间序列数据嵌入高噪声
    • US20100228530A1
    • 2010-09-09
    • US12652405
    • 2010-01-05
    • Henri-Pierre ValeroSandip BoseQiuhua LiuRamachandra ShenoyAbderrhamane Ounadjela
    • Henri-Pierre ValeroSandip BoseQiuhua LiuRamachandra ShenoyAbderrhamane Ounadjela
    • G06F17/10
    • E21B43/26G01V1/288G01V2210/123
    • Automatic detection and accurate time picking of weak events embedded in strong noise such as microseismicity induced by hydraulic fracturing is accomplished by: a noise reduction step to separate out the noise and estimate its spectrum; an events detection and confidence indicator step, in which a new statistical test is applied to detect which time windows contain coherent arrivals across components and sensors in the multicomponent array and to indicate the confidence in this detection; and a time-picking step to accurately estimate the time of onset of the arrivals detected above and measure the time delay across the array using a hybrid beamforming method incorporating the use of higher order statistics. In the context of hydraulic fracturing, this could enhance the coverage and mapping of the fractures while also enabling monitoring from the treatment well itself where there is usually much higher and spatially correlated noise.
    • 自动检测和精确时间采集嵌入强噪声(如水力压裂引起的微震)的弱事件是通过以下方式实现的:通过降噪步骤分离噪声并估计其频谱; 事件检测和置信指标步骤,其中应用新的统计测试以检测哪个时间窗口包含多组件阵列中的组件和传感器之间的相干到达,并指示该检测的置信度; 以及精确估计上述检测到达时间的时间选择步骤,并且使用结合使用更高阶统计量的混合波束成形方法来测量阵列上的时间延迟。 在水力压裂的背景下,这可以增强裂缝的覆盖和映射,同时还能够从处理井本身进行监测,其中通常有更高的空间相关噪声。