会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • AUTOMATIC DISPERSION EXTRACTION OF MULTIPLE TIME OVERLAPPED ACOUSTIC SIGNALS
    • 多时间叠加声音信号的自动分散提取
    • US20100157731A1
    • 2010-06-24
    • US12644862
    • 2009-12-22
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • G01V1/00
    • G01V1/50G01V1/30G01V1/307G01V2210/00
    • Slowness dispersion characteristics of multiple possibly interfering signals in broadband acoustic waves as received by an array of two or more sensors are extracted without using a physical model. The problem of dispersion extraction is mapped to the problem of reconstructing signals having a sparse representation in an appropriately chosen over-complete dictionary of basis elements. A sparsity penalized signal reconstruction algorithm is described where the sparsity constraints are implemented by imposing a l1 norm type penalty. The candidate modes that are extracted are consolidated by means of a clustering algorithm to extract phase and group slowness estimates at a number of frequencies which are then used to reconstruct the desired dispersion curves. These estimates can be further refined by building time domain propagators when signals are known to be time compact, such as by using the continuous wavelet transform.
    • 在不使用物理模型的情况下提取由两个或更多个传感器的阵列接收的宽带声波中的多个可能干扰信号的慢度色散特性。 色散提取的问题被映射到在基本元素的适当选择的过完整字典中重建具有稀疏表示的信号的问题。 描述了稀疏惩罚信号重建算法,其中稀疏约束通过施加l1范数类型惩罚来实现。 提取的候选模式通过聚类算法进行合并,以提取多个频率的相位和组慢度估计,然后用于重建所需的色散曲线。 当已知信号是时间紧凑的,例如通过使用连续小波变换,可以通过构建时域传播器来进一步改进这些估计。
    • 2. 发明授权
    • Dispersion extraction for acoustic data using time frequency analysis
    • 使用时频分析对声学数据进行色散提取
    • US07649805B2
    • 2010-01-19
    • US11854405
    • 2007-09-12
    • Sandip BoseHenri-Pierre ValeroShuchin Aeron
    • Sandip BoseHenri-Pierre ValeroShuchin Aeron
    • G01V1/00
    • G01V1/48
    • This invention pertains to the extraction of the slowness dispersion characteristics of acoustic waves received by an array of two or more sensors by the application of a continuous wavelet transform on the received array waveforms (data). This produces a time-frequency map of the data for each sensor that facilitates the separation of the propagating components thereon. Two different methods are described to achieve the dispersion extraction by exploiting the time frequency localization of the propagating mode and the continuity of the dispersion curve as a function of frequency. The first method uses some features on the modulus map such as the peak to determine the time locus of the energy of each mode as a function of frequency. The second method uses a new modified Radon transform applied to the coefficients of the time frequency representation of the waveform traces received by the aforementioned sensors. Both methods are appropriate for automated extraction of the dispersion estimates from the data without the need for expert user input or supervision.
    • 本发明涉及通过对接收到的阵列波形(数据)应用连续小波变换来提取由两个或更多个传感器的阵列接收的声波的慢度色散特性。 这产生用于每个传感器的数据的时间 - 频率图,其有助于在其上分离传播部件。 描述了两种不同的方法来通过利用传播模式的时间频率定位和作为频率的函数的色散曲线的连续性来实现色散提取。 第一种方法使用诸如峰值的模态图上的一些特征来确定每种模式的能量的时间轨迹作为频率的函数。 第二种方法使用新的修改的Radon变换,其应用于由上述传感器接收的波形迹线的时间频率表示的系数。 这两种方法适用于从数据中自动提取色散估计值,而无需专家用户输入或监督。
    • 3. 发明授权
    • Automatic dispersion extraction of multiple time overlapped acoustic signals
    • 多重重叠声信号的自动色散提取
    • US08339897B2
    • 2012-12-25
    • US12644862
    • 2009-12-22
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • Shuchin AeronSandip BoseHenri-Pierre ValeroVenkatesh Saligrama
    • G01V1/50
    • G01V1/50G01V1/30G01V1/307G01V2210/00
    • Slowness dispersion characteristics of multiple possibly interfering signals in broadband acoustic waves as received by an array of two or more sensors are extracted without using a physical model. The problem of dispersion extraction is mapped to the problem of reconstructing signals having a sparse representation in an appropriately chosen over-complete dictionary of basis elements. A sparsity penalized signal reconstruction algorithm is described where the sparsity constraints are implemented by imposing a l1 norm type penalty. The candidate modes that are extracted are consolidated by means of a clustering algorithm to extract phase and group slowness estimates at a number of frequencies which are then used to reconstruct the desired dispersion curves. These estimates can be further refined by building time domain propagators when signals are known to be time compact, such as by using the continuous wavelet transform.
    • 在不使用物理模型的情况下提取由两个或更多个传感器的阵列接收的宽带声波中的多个可能干扰信号的慢度色散特性。 色散提取的问题被映射到在基本元素的适当选择的过完整字典中重建具有稀疏表示的信号的问题。 描述了稀疏惩罚信号重建算法,其中稀疏约束通过施加l1范数类型惩罚来实现。 提取的候选模式通过聚类算法进行合并,以提取多个频率的相位和组慢度估计,然后用于重建所需的色散曲线。 当已知信号是时间紧凑的,例如通过使用连续小波变换,可以通过构建时域传播器来进一步改进这些估计。
    • 4. 发明申请
    • DISPERSION EXTRACTION FOR ACOUSTIC DATA USING TIME FREQUENCY ANALYSIS
    • 使用时频分析对声音数据进行分散提取
    • US20090067286A1
    • 2009-03-12
    • US11854405
    • 2007-09-12
    • Sandip BoseHenri Pierre ValeroShuchin Aeron
    • Sandip BoseHenri Pierre ValeroShuchin Aeron
    • G01V1/28
    • G01V1/48
    • This invention pertains to the extraction of the slowness dispersion characteristics of acoustic waves received by an array of two or more sensors by the application of a continuous wavelet transform on the received array waveforms (data). This produces a time-frequency map of the data for each sensor that facilitates the separation of the propagating components thereon. Two different methods are described to achieve the dispersion extraction by exploiting the time frequency localization of the propagating mode and the continuity of the dispersion curve as a function of frequency. The first method uses some features on the modulus map such as the peak to determine the time locus of the energy of each mode as a function of frequency. The second method uses a new modified Radon transform applied to the coefficients of the time frequency representation of the waveform traces received by the aforementioned sensors. Both methods are appropriate for automated extraction of the dispersion estimates from the data without the need for expert user input or supervision
    • 本发明涉及通过对接收到的阵列波形(数据)应用连续小波变换来提取由两个或更多个传感器阵列接收的声波的慢度色散特性。 这产生用于每个传感器的数据的时间 - 频率图,其有助于在其上分离传播部件。 描述了两种不同的方法来通过利用传播模式的时间频率定位和作为频率的函数的色散曲线的连续性来实现色散提取。 第一种方法使用诸如峰值的模态图上的一些特征来确定每种模式的能量的时间轨迹作为频率的函数。 第二种方法使用新的修改的Radon变换,其应用于由上述传感器接收的波形迹线的时间频率表示的系数。 这两种方法适用于从数据中自动提取色散估计值,而无需专家用户输入或监督