会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Chip handler with a buffer traveling between roaming areas for two non-colliding robotic arms
    • 芯片处理程序与两个非碰撞机器人臂之间的漫游区域之间移动
    • US07783447B2
    • 2010-08-24
    • US11944614
    • 2007-11-24
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • G06F19/00G06F17/40
    • B25J9/1666B25J9/16G05B19/4182Y02P90/083
    • Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    • 两个机器人臂在测试台的分开的,不重叠的区域漫游,避免碰撞。 移动缓冲器沿着前方位置和后方位置之间的x轨道移动。 在前置位置,第一机器臂将IC芯片从输入托盘或堆叠器装载到行进缓冲器中的缓冲腔中。 移动缓冲器然后沿x轨道移动到后部位置,其中第二机器人臂将芯片从行进缓冲器移动到测试板进行测试。 在测试之后,第二机器人臂将芯片移动到第二行进缓冲器,然后第二移动缓冲器沿着轨道移动到前部位置,以由第一机器人臂卸载。 两个移动缓冲器可以在循环中的相同轨道上移动。 移动缓冲器中的缓冲腔在内部轨道上移动以在前后位置之间扩展和收缩间距和间距,以匹配测试板间距。
    • 2. 发明申请
    • Chip Handler with a Buffer Traveling between Roaming Areas for Two Non-Colliding Robotic Arms
    • 具有缓冲器的芯片处理器在两个非碰撞机器人臂的漫游区域之间行进
    • US20090138119A1
    • 2009-05-28
    • US11944614
    • 2007-11-24
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • G06F19/00
    • B25J9/1666B25J9/16G05B19/4182Y02P90/083
    • Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    • 两个机器人臂在测试台的分开的,不重叠的区域漫游,避免碰撞。 移动缓冲器沿着前方位置和后方位置之间的x轨道移动。 在前置位置,第一机器臂将IC芯片从输入托盘或堆叠器装载到行进缓冲器中的缓冲腔中。 移动缓冲器然后沿x轨道移动到后部位置,其中第二机器人臂将芯片从行进缓冲器移动到测试板进行测试。 在测试之后,第二机器人臂将芯片移动到第二行进缓冲器,然后第二移动缓冲器沿着轨道移动到前部位置,以由第一机器人臂卸载。 两个移动缓冲器可以在循环中的相同轨道上移动。 移动缓冲器中的缓冲腔在内部轨道上移动以在前后位置之间扩展和收缩间距和间距,以匹配测试板间距。
    • 3. 发明授权
    • Chip handler with a buffer traveling between roaming areas for two non-colliding robotic arms
    • 芯片处理程序与两个非碰撞机器人臂之间的漫游区域之间移动
    • US07917327B2
    • 2011-03-29
    • US12831777
    • 2010-07-07
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • G06F19/00G06F17/40
    • B25J9/1666B25J9/16G05B19/4182Y02P90/083
    • Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    • 两个机器人臂在测试台的分开的,不重叠的区域漫游,避免碰撞。 移动缓冲器沿着前方位置和后方位置之间的x轨道移动。 在前置位置,第一机器臂将IC芯片从输入托盘或堆叠器装载到行进缓冲器中的缓冲腔中。 移动缓冲器然后沿x轨道移动到后部位置,其中第二机器人臂将芯片从行进缓冲器移动到测试板进行测试。 在测试之后,第二机器人臂将芯片移动到第二行进缓冲器,然后第二移动缓冲器沿着轨道移动到前部位置,以由第一机器人臂卸载。 两个移动缓冲器可以在循环中的相同轨道上移动。 移动缓冲器中的缓冲腔在内部轨道上移动以在前后位置之间扩展和收缩间距和间距,以匹配测试板间距。
    • 4. 发明申请
    • Chip Handler with a Buffer Traveling between Roaming Areas for Two Non-Colliding Robotic Arms
    • 具有缓冲器的芯片处理器在两个非碰撞机器人臂的漫游区域之间行进
    • US20100274517A1
    • 2010-10-28
    • US12831777
    • 2010-07-07
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • Ramon S. CoTat Leung LaiCalvin G. Leong
    • G06F19/00G05B19/418
    • B25J9/1666B25J9/16G05B19/4182Y02P90/083
    • Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    • 两个机器人臂在测试台的分开的,不重叠的区域漫游,避免碰撞。 移动缓冲器沿着前方位置和后方位置之间的x轨道移动。 在前置位置,第一机器臂将IC芯片从输入托盘或堆叠器装载到行进缓冲器中的缓冲腔中。 移动缓冲器然后沿x轨道移动到后部位置,其中第二机器人臂将芯片从行进缓冲器移动到测试板进行测试。 在测试之后,第二机器人臂将芯片移动到第二行进缓冲器,然后第二移动缓冲器沿着轨道移动到前部位置,以由第一机器人臂卸载。 两个移动缓冲器可以在循环中的相同轨道上移动。 移动缓冲器中的缓冲腔在内部轨道上移动以在前后位置之间扩展和收缩间距和间距,以匹配测试板间距。
    • 5. 发明授权
    • Memory-module extender card for visually decoding addresses from diagnostic programs and ignoring operating system accesses
    • 内存模块扩展卡,用于从诊断程序视觉上解码地址,忽略操作系统访问
    • US08396998B2
    • 2013-03-12
    • US12965699
    • 2010-12-10
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • G06F3/00G06F5/00
    • G06F11/273G11C11/406G11C29/56G11C2029/5602
    • A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
    • 诊断扩展卡插入个人计算机(PC)主板上的内存模块插槽。 扩展卡具有接收存储器模块的测试插座和从主板接收芯片选择(CS)的截取解码器芯片,其选择存储器模块进行访问。 当CS被激活时,拦截解码器芯片照亮扩展卡上的视觉指示符,允许用户定位被访问的存储器模块。 不需要将测试程序的逻辑地址到存储器模块的物理地址的精确翻译或映射,因为可视指示器显示了正在被访问的存储器模块,而不考虑北桥芯片的专有地址映射。 操作系统存储器访问由在定时器设置的周期内对存取进行计数的计数器滤除。 当访问次数超过阈值时,视觉指示灯亮起。
    • 6. 发明申请
    • Memory-Module Extender Card for Visually Decoding Addresses from Diagnostic Programs and Ignoring Operating System Accesses
    • 用于从诊断程序视觉解码地址的内存模块扩展卡,忽略操作系统访问
    • US20120151287A1
    • 2012-06-14
    • US12965699
    • 2010-12-10
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • G11C29/00G11C29/56
    • G06F11/273G11C11/406G11C29/56G11C2029/5602
    • A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
    • 诊断扩展卡插入个人计算机(PC)主板上的内存模块插槽。 扩展卡具有接收存储器模块的测试插座和从主板接收芯片选择(CS)的截取解码器芯片,其选择存储器模块进行访问。 当CS被激活时,拦截解码器芯片照亮扩展卡上的视觉指示符,允许用户定位被访问的存储器模块。 不需要将测试程序的逻辑地址到存储器模块的物理地址的精确翻译或映射,因为可视指示器显示了正在被访问的存储器模块,而不考虑北桥芯片的专有地址映射。 操作系统存储器访问由在定时器设置的周期内对存取进行计数的计数器滤除。 当访问次数超过阈值时,视觉指示灯亮起。
    • 7. 发明授权
    • Extender card with intercepting EEPROM for testing and programming un-programmed memory modules on a PC motherboard
    • 扩展卡与截取EEPROM,用于在PC主板上测试和编程未编程的内存模块
    • US07117405B2
    • 2006-10-03
    • US10249648
    • 2003-04-28
    • Ramon S. CoTat Leung LaiDavid Da-Wei Sun
    • Ramon S. CoTat Leung LaiDavid Da-Wei Sun
    • G11C29/00G06F11/00
    • G11C29/48G11C16/04
    • An extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module under test. The extender card has an intercepting EEPROM chip that receives device-select lines from the motherboard. One of the device-select lines from the motherboard to a module EEPROM chip on the memory module is blocked by the extender card and altered so that the intercepting EEPROM chip is read by the motherboard rather than the module EEPROM chip. A memory configuration is read from the intercepting EEPROM chip. The memory module is tested by the motherboard using the configuration from the intercepting EEPROM chip on the extender card. The module EEPROM chip is then programmed with the configuration by altering the intercepted device-select address to select the module EEPROM chip and not the intercepting EEPROM chip.
    • 扩展卡插入个人计算机(PC)主板上的内存模块插槽。 扩展卡具有接收被测内存模块的测试插槽。 扩展卡具有从主板接收设备选择线的截取EEPROM芯片。 从主板到存储器模块上的模块EEPROM芯片的一个设备选择线被扩展卡阻挡,并被改变,从而拦截EEPROM芯片被主板而不是模块EEPROM芯片读取。 从截取的EEPROM芯片读取存储器配置。 内存模块由主板使用扩展卡上拦截EEPROM芯片的配置进行测试。 然后通过更改截取的器件选择地址来选择模块EEPROM芯片,而不是拦截EEPROM芯片,将模块EEPROM芯片编程为配置。
    • 8. 发明授权
    • Memory-module extender card for visually decoding addresses from diagnostic programs and ignoring operating system accesses
    • 内存模块扩展卡,用于从诊断程序视觉上解码地址,忽略操作系统访问
    • US08738819B2
    • 2014-05-27
    • US13760948
    • 2013-02-06
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • Jerry N. LeNgoc V. LeTat Leung LaiRamon S. Co
    • G06F3/00
    • G06F11/273G11C11/406G11C29/56G11C2029/5602
    • A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
    • 诊断扩展卡插入个人计算机(PC)主板上的内存模块插槽。 扩展卡具有接收存储器模块的测试插座和从主板接收芯片选择(CS)的截取解码器芯片,其选择存储器模块进行访问。 当CS被激活时,拦截解码器芯片照亮扩展卡上的视觉指示符,允许用户定位被访问的存储器模块。 不需要将测试程序的逻辑地址到存储器模块的物理地址的精确翻译或映射,因为可视指示器显示了正在被访问的存储器模块,而不考虑北桥芯片的专有地址映射。 操作系统存储器访问由在定时器设置的周期内对存取进行计数的计数器滤除。 当访问次数超过阈值时,视觉指示灯亮起。
    • 9. 发明授权
    • Loop-Back Memory-Module Extender Card for Self-Testing Fully-Buffered Memory Modules
    • 环回内存模块扩展卡,用于自检全缓冲内存模块
    • US07197676B2
    • 2007-03-27
    • US10908716
    • 2005-05-24
    • Ramon S. CoTat Leung Lai
    • Ramon S. CoTat Leung Lai
    • G11C29/00G06F11/00
    • G11C29/56G11C5/04G11C2029/3602G11C2029/5602
    • A loop-back extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module under test. An Advanced Memory Buffer (AMB) on the memory module fully buffers DRAM chips on the memory module. The AMB inputs from and outputs to the test socket differential northbound lanes (toward a processor) and southbound lanes (away from the processor). The extender card has northbound loopback traces that connect northbound lane outputs from the memory module back to northbound-lane inputs to the memory module. Southbound loopback traces connect southbound lane outputs from the memory module back to southbound-lane inputs to the memory module. The loop-back extender card allows the AMB to perform loopback testing without modifying the PC motherboard. Series/shunt resistors can be placed on the loopback traces, or serpentine traces can be used to increase loopback delays.
    • 环回延长卡插入个人计算机(PC)主板上的内存模块插槽。 扩展卡具有接收被测内存模块的测试插槽。 存储器模块上的高级存储器缓冲器(AMB)完全缓冲存储器模块上的DRAM芯片。 AMB从测试插座差分北行车道(朝向处理器)和南行车道(远离处理器)输入和输出。 扩展卡具有北向环回路线,将来自存储模块的北行车道输出连接回北行车道输入至存储模块。 南向环回路线将内存模块的南行通道输出连接回内行模块的南行通道输入。 环回延长卡允许AMB在不修改PC主板的情况下进行环回测试。 串联/并联电阻可以放置在回送轨迹上,也可以使用蛇形轨迹来增加环回延迟。