会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for forming a silicide using ion beam mixing
    • 使用离子束混合形成硅化物的方法
    • US5470794A
    • 1995-11-28
    • US200628
    • 1994-02-23
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/265H01L21/285H01L21/336H01L21/283
    • H01L29/66575H01L21/26506H01L21/26526H01L21/28518Y10S148/019
    • An improved method is provided for fabricating a metal silicide upon a semiconductor substrate. The method utilizes ion beam mixing by implanting germanium to a specific elevation level within a metal layer overlying a silicon contact region. The implanted germanium atoms impact upon and move a plurality of metal atoms through the metal-silicon interface and into a region residing immediately below the silicon (or polysilicon) surface. The metal atoms can therefore bond with silicon atoms to cause a pre-mixing of metal with silicon near the interface in order to enhance silicidation. Germanium is advantageously chosen as the irradiating species to ensure proper placement of the germanium and ensuing movement of dislodged metal atoms necessary for minimizing oxides left in the contact windows and lattice damage within the underlying silicon (or polysilicon).
    • 提供了一种用于在半导体衬底上制造金属硅化物的改进方法。 该方法通过将锗注入到覆盖硅接触区域的金属层内的特定高度水平上来利用离子束混合。 植入的锗原子冲击并移动多个金属原子通过金属 - 硅界面并移动到位于硅(或多晶硅)表面正下方的区域中。 因此,为了增强硅化物,金属原子可以与硅原子键合以在界面附近引起金属与硅的预混合。 有利地,锗被选择为照射种类,以确保锗的适当放置和随后的移动的金属原子的移动,以使残留在接触窗口中的氧化物和底层硅(或多晶硅)中的晶格损伤最小化。
    • 3. 发明授权
    • Method for low energy implantation of argon to control titanium silicide
formation
    • 用于低能量注入氩气以控制硅化钛形成的方法
    • US5444024A
    • 1995-08-22
    • US258542
    • 1994-06-10
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/285H01L21/265H01L21/28
    • H01L21/28518Y10S148/019Y10S148/144
    • A method is provided for controlling growth of silicide to a defined thickness based upon the relative position of peak concentration density depth within a layer of titanium. The titanium layer is deposited over silicon and namely over the silicon junction regions. Thereafter the titanium is implanted with argon ions. The argon ions are implanted at a peak concentration density level corresponding to a depth relative to the upper surface of the titanium. The peak concentration density depth can vary depending upon the dosage and implant energies of the ion implanter. Preferably, the peak concentration density depth is at a midpoint between the upper and lower surfaces of the titanium or at an elevational level beneath the midpoint and above the lower surface of the titanium. Subsequent anneal of the argon-implanted titanium causes the argon atoms to occupy a diffusion area normally taken by silicon consumed and growing within overlying titanium. However, based upon the presence of argon, the diffusion length and therefore the silicide thickness is reduced to a controllable amount necessary for applications with ultra-shallow junction depths.
    • 提供了一种基于钛层内的峰浓度密度深度的相对位置来控制硅化物的规定厚度的方法。 钛层沉积在硅上,即在硅结区上。 之后,用氩离子注入钛。 以与钛的上表面相对应的深度的峰值浓度密度水平注入氩离子。 峰浓度密度深度可以根据离子注入机的剂量和植入能量而变化。 优选地,峰浓度密度深度处于钛的上表面和下表面之间的中点处,或者在钛的下表面上方的中点以上。 氩注入钛的后续退火导致氩原子占据通常被硅消耗并在上覆钛内生长的扩散区域。 然而,基于氩的存在,扩散长度以及因此的硅化物厚度减小到具有超浅结深度的应用所需的可控量。
    • 4. 发明授权
    • Semicondutor having selectively enhanced field oxide areas and method
for producing same
    • 具有选择性增强的场氧化物区域的半导体及其制造方法
    • US5661335A
    • 1997-08-26
    • US515285
    • 1995-08-15
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/265H01L21/762H01L23/58H01L29/00
    • H01L21/26506H01L21/76213H01L2924/0002Y10S438/981
    • A field oxide is provided which purposefully takes advantage of fluorine mobility from an implanted impurity species. The field oxide can be enhanced or thickened according to the size (area and thickness) of the oxide. Fluorine from the impurity species provides for dislodgement of oxygen at silicon-oxygen bond sites, leading to oxygen recombination at the field oxide/substrate interface. Thickening of the oxide through recombination occurs after it is initially grown and implanted. Accordingly, initial thermal oxidation can be shortened to enhance throughput. The fluorine-enhanced thickening effect can therefore compensate for the shorter thermal oxidation time. Moreover, the thickened oxide regions are anistropically oxidized underneath existing thermally grown oxides and directly underneath openings between nitrides. The thickened oxides therefore do not cause additional shrinkage of the active areas which reside between field oxides.
    • 提供了一种场氧化物,其目的是利用植入的杂质物质的氟迁移率。 根据氧化物的尺寸(面积和厚度)可以增强或增厚氧化场。 来自杂质物质的氟提供氧 - 氧键位置处的氧的移出,导致在氧化物/底物界面处的氧复合。 在最初生长和植入之后,发生通过重组的氧化物的增稠。 因此,可以缩短初始热氧化以提高生产量。 因此,氟增强增稠效果可以补偿较短的热氧化时间。 此外,增厚的氧化物区域在现有的热生长氧化物的下面被钝化地氧化并且直接在氮化物之间的开口下方氧化。 因此,增稠的氧化物不会引起驻留在场氧化物之间的活性区域的额外收缩。
    • 6. 发明授权
    • Method of making a semiconductor having selectively enhanced field oxide
areas
    • 制造具有选择性增强的场氧化物区域的半导体的方法
    • US5372951A
    • 1994-12-13
    • US131194
    • 1993-10-01
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/265H01L21/762H01L21/266
    • H01L21/26506H01L21/76213H01L2924/0002Y10S438/981
    • A field oxide is provided which purposefully takes advantage of fluorine mobility from an implanted impurity species. The field oxide can be enhanced or thickened according to the size (area and thickness) of the oxide. Fluorine from the impurity species provides for dislodgement of oxygen at silicon-oxygen bond sites, leading to oxygen recombination at the field oxide/substrate interface. Thickening of the oxide through recombination occurs after it is initially grown and implanted. Accordingly, initial thermal oxidation can be shortened to enhance throughput. The fluorine-enhanced thickening effect can therefore compensate for the shorter thermal oxidation time. Moreover, the thickened oxide regions are anistropically oxidized underneath existing thermally grown oxides and directly underneath openings between nitrides. The thickened oxides therefore do not cause additional shrinkage of the active areas which reside between field oxides.
    • 提供了一种场氧化物,其目的是利用植入的杂质物质的氟迁移率。 根据氧化物的尺寸(面积和厚度)可以增强或增厚氧化场。 来自杂质物质的氟提供氧 - 氧键位置处的氧的移出,导致在氧化物/底物界面处的氧复合。 在最初生长和植入之后,发生通过重组的氧化物的增稠。 因此,可以缩短初始热氧化以提高生产量。 因此,氟增强增稠效果可以补偿较短的热氧化时间。 此外,增厚的氧化物区域在现有的热生长氧化物的下面被钝化地氧化并且直接在氮化物之间的开口下方氧化。 因此,增稠的氧化物不会引起驻留在场氧化物之间的活性区域的额外收缩。
    • 8. 发明授权
    • Semiconductor field region implant methodology
    • 半导体领域植入方法
    • US06482719B1
    • 2002-11-19
    • US08526149
    • 1995-08-02
    • Mohammed AnjumAlan L. StuberMaung H. Kyaw
    • Mohammed AnjumAlan L. StuberMaung H. Kyaw
    • H01L2130
    • H01L21/76216H01L21/823481
    • An MOS device is provided having a channel-stop implant placed between active regions and beneath field oxides. The channel-stop dopant material is a p-type material of atomic weight greater than boron, and preferably utilizes solely indium ions. The indium ions, once implanted, have a greater tendency to remain in their position than boron ions. Subsequent temperature cycles caused by, for example, field oxide growth do not significantly change the initial implant position. Thus, NMOS devices utilizing indium channel-stop dopant can achieve higher pn junction breakdown voltages and lower parasitic source/drain-to-substrate capacitances. Furthermore, the heavier indium ions can be more accurately placed than lighter boron ions to a region just below the silicon layer which is to be consumed by subsequent field oxide growth. By fixing the peak concentration density of indium at a depth just below the field oxide lower surface, channel-stop implant region is very shallow. Small dispersions in range allow for more precise control of the indium atoms just below the field oxide, further from the inner bulk material of the underlying substrate.
    • 提供了MOS器件,其具有放置在有源区域之间和场氧化物之下的通道停止植入物。 通道阻挡掺杂剂材料是原子量大于硼的p型材料,并且优选仅使用铟离子。 一旦注入,铟离子比硼离子具有更大的保留位置的倾向。 由例如场氧化物生长引起的后续温度循环不会显着改变初始植入位置。 因此,利用铟通道停止掺杂剂的NMOS器件可以实现更高的pn结击穿电压和较低的寄生源/漏极到衬底电容。 此外,较重的铟离子可以比较轻的硼离子更准确地放置在正好在随后的场氧化物生长消耗的硅层之下的区域。 通过在刚好低于场氧化物下表面的深度固定铟的峰浓度密度,通道停止注入区非常浅。 范围内的小分散体允许对场氧化物正下方的铟原子进行更精确的控制,远离底层基底的内部体积材料。