会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Automating photolithography in the fabrication of integrated circuits
    • 在制造集成电路时自动化光刻
    • US5663076A
    • 1997-09-02
    • US512678
    • 1995-08-08
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • G03F7/20H01L21/66
    • G03F7/705G03F7/20G03F7/70433
    • Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and yield parameters is then transferred back to the Rayleigh processor for use in the designing of subsequent circuits. In this way, a direct coupling exists between the measurement of wafer process parameters and the automated sizing of semiconductor devices, enabling the production of circuits having the smallest manufacturable device sizes available for the given lithography and wafer process.
    • 集成电路晶片的自动光刻可通过连接到瑞利分离器,形状因子发生器,逻辑合成器,布局发生器,光刻模块和晶片工艺的处理器来实现。 Rayleigh变矩器接收由晶片工艺中的屈服数据产生的制造信息,然后使用该制造数据降低可用于蚀刻具有已知光源和物镜数值孔径的晶片掩模的理论最小特征尺寸。 然后,这种最小特征尺寸由形状因子发生器用于将网络列表中的晶体管调整到其最小可制造尺寸。 然后,逻辑合成器将网络列表转换为使用布局生成器与用户定义的约束组合的物理设计。 然后该掩模光刻模块将该物理设计用于半导体制造中使用的晶片掩模。 然后将包括处理和产量参数的制造数据传送回瑞利处理器,以用于后续电路的设计。 以这种方式,在晶片工艺参数的测量和半导体器件的自动化尺寸之间存在直接耦合,使得能够生产具有可用于给定光刻和晶片工艺的最小可制造器件尺寸的电路。
    • 2. 发明授权
    • Automating photolithography in the fabrication of integrated circuits
    • 在制造集成电路时自动化光刻
    • US06418353B1
    • 2002-07-09
    • US09064802
    • 1998-04-22
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • G06F1900
    • G03F7/705G03F7/70433G03F7/70625
    • Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and. yield parameters is then transferred back to the Rayleigh processor for use in the designing of subsequent circuits. In this way, a direct coupling exists between the measurement of wafer process parameters and the automated sizing of semiconductor devices, enabling the production of circuits having the smallest manufacturable device sizes available for the given lithography and wafer process.
    • 集成电路晶片的自动光刻可通过连接到瑞利分离器,形状因子发生器,逻辑合成器,布局发生器,光刻模块和晶片工艺的处理器来实现。 Rayleigh变矩器接收由晶片工艺中的屈服数据产生的制造信息,然后使用该制造数据降低可用于蚀刻具有已知光源和物镜数值孔径的晶片掩模的理论最小特征尺寸。 然后,这种最小特征尺寸由形状因子发生器用于将网络列表中的晶体管调整到其最小可制造尺寸。 然后,逻辑合成器将网络列表转换为使用布局生成器与用户定义的约束组合的物理设计。 然后该掩模光刻模块将该物理设计用于半导体制造中使用的晶片掩模。 制造数据包括流程和。 然后将产量参数转移回瑞利处理器用于后续电路的设计。 以这种方式,在晶片工艺参数的测量和半导体器件的自动化尺寸之间存在直接耦合,使得能够生产具有可用于给定光刻和晶片工艺的最小可制造器件尺寸的电路。
    • 3. 再颁专利
    • Automating photolithography in the fabrication of integrated circuits
    • 在制造集成电路时自动化光刻
    • USRE38900E1
    • 2005-11-29
    • US09273171
    • 1999-03-19
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • G03F7/20H01L21/66
    • G03F7/705G03F7/20G03F7/70433
    • Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and yield parameters is then transferred back to the Rayleigh processor for use in the designing of subsequent circuits. In this way, a direct coupling exists between the measurement of wafer process parameters and the automated sizing of semiconductor devices, enabling the production of circuits having the smallest manufacturable device sizes available for the given lithography and wafer process.
    • 集成电路晶片的自动光刻可通过连接到瑞利分离器,形状因子发生器,逻辑合成器,布局发生器,光刻模块和晶片工艺的处理器来实现。 Rayleigh变矩器接收由晶片工艺中的屈服数据产生的制造信息,然后使用该制造数据降低可用于蚀刻具有已知光源和物镜数值孔径的晶片掩模的理论最小特征尺寸。 然后,这种最小特征尺寸由形状因子发生器用于将网络列表中的晶体管调整到其最小可制造尺寸。 然后,逻辑合成器将网络列表转换为使用布局生成器与用户定义的约束组合的物理设计。 然后该掩模光刻模块将该物理设计用于半导体制造中使用的晶片掩模。 然后将包括处理和产量参数的制造数据传送回瑞利处理器,以用于后续电路的设计。 以这种方式,在晶片工艺参数的测量和半导体器件的自动化尺寸之间存在直接耦合,使得能够生产具有可用于给定光刻和晶片工艺的最小可制造器件尺寸的电路。
    • 4. 发明授权
    • Process for forming low dielectric constant insulation layer on
integrated circuit structure
    • 在集成电路结构上形成低介电常数绝缘层的工艺
    • US5393712A
    • 1995-02-28
    • US84829
    • 1993-06-28
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • Michael D. RostokerNicholas F. PaschAshok K. Kapoor
    • H01L21/316H01L21/768H01L21/02
    • H01L21/02304H01L21/02129H01L21/02203H01L21/02271H01L21/02343H01L21/02362H01L21/31695H01L21/76801H01L21/7682H01L21/76832H01L21/76829H01L2221/1047
    • A process is described for forming a low dielectric constant insulation layer on an integrated circuit structure on a semiconductor wafer by first forming a composite layer, comprising one or more extractable materials and one or more matrix-forming insulation materials, over an integrated circuit structure on a semiconductor wafer, and then selectively removing the extractable material from the matrix-forming material without damaging the remaining matrix material, thereby leaving behind a porous matrix of the insulation material. In one embodiment, the composite layer is formed from a gel. The extractable material is removed by first dissolving it in a first liquid which is not a solvent for the matrix-forming material to form a solution. This solution is then removed from the matrix-forming material by rinsing the matrix in a second liquid miscible with the first solvent and which also is not a solvent from the matrix-forming material. The second liquid is then preferably removed from the matrix-forming material either by lyophilizing (freeze drying) or by raising the pressure and temperature above the critical point of the second liquid.
    • 描述了一种用于在半导体晶片上的集成电路结构上形成低介电常数绝缘层的工艺,首先在集成电路结构上形成复合层,该复合层包括一种或多种可提取材料和一种或多种矩阵形成绝缘材料 半导体晶片,然后从基质形成材料中选择性地除去可提取材料,而不损坏剩余的基体材料,从而留下绝缘材料的多孔基体。 在一个实施方案中,复合层由凝胶形成。 通过首先将其溶解在不是基质形成材料的溶剂形成溶液的第一液体中来除去可萃取材料。 然后通过在与第一溶剂混溶的第二液体中冲洗基质并且也不是基质形成材料的溶剂,从基质形成材料中除去该溶液。 然后优选通过冻干(冷冻干燥)或通过将压力和温度升高到高于第二液体的临界点的方式从基质形成材料中除去第二液体。
    • 5. 发明授权
    • Programmable triangular shaped device having variable gain
    • 具有可变增益的可编程三角形器件
    • US06312980B1
    • 2001-11-06
    • US09092827
    • 1998-06-05
    • Michael D. RostokerJames S. KofordRanko ScepanovicEdwin R. JonesGobi R. PadmanahbenAshok K. KapoorValeriv B. KudryavtsevAlexander E. AndreevStanislav V. AleshinAlexander S. Podkolzin
    • Michael D. RostokerJames S. KofordRanko ScepanovicEdwin R. JonesGobi R. PadmanahbenAshok K. KapoorValeriv B. KudryavtsevAlexander E. AndreevStanislav V. AleshinAlexander S. Podkolzin
    • H01L2182
    • H01L27/108G06F17/5072G06F17/5077G11C5/025G11C5/063H01L23/528H01L27/11H01L27/1104H01L27/11807H01L29/0657H01L2924/0002Y10S438/965H01L2924/00
    • Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60°. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed. A novel device called a “tri-ister” is disclosed. Triangular devices are disclosed, including triangular NAND gates, triangular AND gates, and triangular OR gates. A triangular op amp and triode are disclosed. A triangular sense amplifier is disclosed. A DRAM memory array and an SRAM memory array, based upon triangular or parallelogram shaped cells, are disclosed, including a method of interconnecting such arrays. A programmable variable drive transistor is disclosed. CAD algorithms and methods are disclosed for designing and making semiconductor devices, which are particularly applicable to the disclosed architecture and tri-directional three metal layer routing.
    • 披露了几个发明。 公开了一种使用六角形电池的电池结构。 该体系结构不限于六角形细胞。 单元可以由两个或更多个六边形的簇,通过三角形,平行四边形以及能够容纳各种单元格形状的其他多边形来定义。 公开了多向非正交三层金属布线。 该架构可以与三向路由组合以用于特别有利的设计。 在三向布线布线中,用于集成电路的微电子单元的互连端子的电导体优选地在彼此成角度地移位60°的三个方向上延伸。 沿三个方向延伸的导体优选地以三个不同的层形成。 公开了一种使半导体器件中的导线长度最小化的方法。 公开了一种使半导体器件中的金属间电容最小化的方法。 公开了一种称为“三元器件”的新型器件。 公开了三角形器件,包括三角形与非门,三角形与门和三角形或门。 公开了三角形运算放大器和三极管。 公开了三角形读出放大器。 公开了一种基于三角形或平行四边形形状的单元的DRAM存储器阵列和SRAM存储器阵列,其包括互连这种阵列的方法。 公开了一种可编程可变驱动晶体管。 公开了用于设计和制造半导体器件的CAD算法和方法,其特别适用于所公开的架构和三向三金属层布线。
    • 8. 发明授权
    • Metal interconnect structures for use with integrated circuit devices to
form integrated circuit structures
    • US5640049A
    • 1997-06-17
    • US565766
    • 1995-11-30
    • Michael D. RostokerAshok K. Kapoor
    • Michael D. RostokerAshok K. Kapoor
    • H01L23/522H01L23/532H01L25/065H01L27/14H01L23/46H01L23/48H01L29/04
    • H01L23/53223H01L23/5226H01L23/53242H01L23/53252H01L25/0657H01L2225/06513H01L2225/06541H01L2225/06593H01L2924/0002Y10S438/975
    • An integrated circuit structure is described wherein individual integrated circuit devices such as MOS or bipolar transistors are constructed on and in a semiconductor substrate and one or more layers of metal interconnects are constructed on and in a second substrate, preferably of similar thickness, and the two substrates are then aligned and bonded together to thereby provide electrical interconnections of individual integrated circuit devices on the semiconductor substrate with appropriate metal interconnects on the second substrate to provide the desired integrated circuit structure without, however, contributing unduly to the overall size of the integrated circuit structure comprising the die or chip. The one or more layers of metal interconnects are formed on the second substrate by the steps of forming a pattern of metal contacts in the second substrate and level with the surface of the substrate; forming a metal layer over the substrate, preferably of a different metal than the metal contacts; patterning the metal layer to form vias; forming a first layer of dielectric material on the surface of the substrate over the exposed portions of the metal contacts and around the metal vias; forming a further metal layer over the first layer of dielectric material and the metal vias, preferably using a different metal than used for the metal vias; patterning the further metal layer into metal interconnects; and depositing a second layer of dielectric material over the exposed portions of the first layer of dielectric material and around the metal interconnects. If desired, the steps of forming the vias and the layer of metal interconnects (as well as the associated dielectric layers) may be repeated as many times as desired or needed to form the desired number of metal interconnect layers for the needed wiring structure. In a preferred embodiment, over the uppermost metal layer is formed a layer of low melting alloy material (solder) prior to the step of patterning this metal layer to facilitate the electrical connection of the metal interconnect structure to low melting alloyable material (solder) formed over a corresponding structure of integrated circuit (semiconductor) devices formed on a semiconductor substrate.