会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Sensor and method for manufacturing the same
    • 传感器及其制造方法
    • US07080543B2
    • 2006-07-25
    • US10409587
    • 2003-04-09
    • Hideki IshikawaYoshikuni SatoKeigo BannoMasashi SakamotoNoboru IshidaTakafumi Oshima
    • Hideki IshikawaYoshikuni SatoKeigo BannoMasashi SakamotoNoboru IshidaTakafumi Oshima
    • G01N29/02
    • G01N29/223G01N2291/021G01N2291/02809G01N2291/02818G01N2291/02881
    • A detecting-element assembly (40) is configured such that a piezoelectric element (51) is housed in a casing body portion (43) of a casing (42), and is attached to a housing portion (22) of a flow path formation member (20) via a flange portion (41). Therefore, the path between the piezoelectric element (51) and the position of attachment of the detecting-element assembly (40) is elongated, whereby ultrasonic waves which leak into the interior of the detecting-element assembly (40) from the piezoelectric element (51) become unlikely to reflectively return from a joint. Thus, the influence of, for example, noise stemming from reflected waves is reduced, thereby enhancing the accuracy of detection. An average clearance of 1 millimeter or more is provided along the outer circumferential surface of the casing body portion (43) of the detecting-element assembly (40), whereby a problem of collected foreign matter is unlikely to occur.
    • 检测元件组件(40)构造成使得压电元件(51)容纳在壳体(42)的壳体主体部分(43)中,并且附接到流路形成的壳体部分(22) 构件(20)经由凸缘部分(41)。 因此,压电元件(51)与检测元件组件(40)的安装位置之间的路径被拉长,从而从压电元件(...)泄漏到检测元件组件(40)的内部的超声波 51)变得不可能从联合反射回来。 因此,降低了例如由反射波产生的噪声的影响,从而提高了检测的准确性。 沿着检测元件组件(40)的壳体主体部(43)的外周面设置有1毫米以上的平均间隙,由此不可能发生收集的异物问题。
    • 3. 发明授权
    • Gas concentration sensor
    • 气体浓度传感器
    • US06892566B2
    • 2005-05-17
    • US10393496
    • 2003-03-21
    • Masashi SakamotoYoshikuni SatoHideki IshikawaKeigo BannoNoboru Ishida
    • Masashi SakamotoYoshikuni SatoHideki IshikawaKeigo BannoNoboru Ishida
    • G01N29/024G01N29/22G01N29/44G01N29/02G01H5/00
    • G01N29/222G01N29/024G01N2291/011G01N2291/015G01N2291/0212G01N2291/0217G01N2291/02809G01N2291/045G01N2291/101
    • A gas concentration sensor includes a measurement chamber for measuring a concentration of a specific gas component in a gas under measurement; an inflow path for allowing inflow of the gas under measurement thereinto and an outflow path for allowing outflow of the gas under measurement therefrom; a reflection wall for reflecting an acoustic wave; and an acoustic wave transmitting-receiving element having a transmitting-receiving surface adapted to transmit an acoustic wave toward the reflection wall and receive an acoustic wave reflected from the reflection wall. The concentration of the specific gas in the gas under measurement is detected on the basis of a propagation time between transmission of the acoustic wave and reception of the reflected acoustic wave. When a predetermined member having the sensor attached thereto is placed in a horizontal plane, the transmitting-receiving surface faces downward. A recess is formed in a peripheral portion of the reflection wall. The recess is receded toward a back surface of the reflection wall, namely, in a direction away from the transmitting-receiving surface.
    • 气体浓度传感器包括用于测量被测气体中特定气体成分浓度的测量室; 用于允许在其中测量气体的流入的流入路径和用于允许从其测量的气体流出的流出路径; 用于反射声波的反射壁; 以及具有发射接收表面的声波发射接收元件,所述发射接收表面适于向反射壁传输声波并接收从反射壁反射的声波。 基于声波的发送和反射声波的接收之间的传播时间来检测被测气体中的比气体的浓度。 当安装有传感器的预定构件放置在水平面中时,发送接收表面向下。 在反射壁的周边部分形成有凹部。 凹部朝向反射壁的后表面,即远离发射接收表面的方向退回。
    • 6. 发明授权
    • Gas concentration sensor
    • 气体浓度传感器
    • US06308572B1
    • 2001-10-30
    • US09504118
    • 2000-02-15
    • Hideki IshikawaYoshikuni SatoKeigo BannoNoboru IshidaTakafumi Oshima
    • Hideki IshikawaYoshikuni SatoKeigo BannoNoboru IshidaTakafumi Oshima
    • G01H500
    • G01N29/222G01N29/024G01N2291/0212G01N2291/0217G01N2291/0258G01N2291/02809G01N2291/02836G01N2291/045
    • A gas concentration sensor comprises an ultrasonic element 33 opposite a reflection surface 34. A depression 34a is formed on an edge portion of a reflection surface 34 which is in contact with a side wall of a measurement chamber 32 such that a bottom surface of the depression 34a is substantially in parallel with the reflection surface 34. The distance between the ultrasonic element 33 and the edge portion of the reflection surface 34 becomes greater than the distance between the ultrasonic element 33 and a central portion of the reflection surface 34. As a result, an indirect wave, which impinges obliquely on the side wall of the measurement chamber 32 and propagates along the side wall, is reflected from the bottom surface of the depression 34a and propagates. Thus, the propagation distance of this indirect wave becomes greater as compared to the case where the reflection surface 34 is flat, so that the indirect wave is not combined with a direct wave in the vicinity of a modulation point of the direct wave. That is, since the modulation point of the direct wave can be detected accurately, a time interval between a modulation point of a transmitted wave and that of a received wave can be measured as the propagation time of an ultrasonic wave, thereby enabling accurate determination of gas concentration.
    • 气体浓度传感器包括与反射面34相对的超声波元件33.凹部34a形成在与测量室32的侧壁接触的反射面34的边缘部分上,使得凹部 34a与反射面34大致平行。超声波元件33与反射面34的边缘部之间的距离变得大于超声波元件33与反射面34的中央部之间的距离。其结果是, ,从斜面34a的底面反射而沿着测量室32的侧壁倾斜并沿侧壁传播的间接波被传播。 因此,与反射面34平坦的情况相比,该间接波的传播距离变大,因此间接波不与直接波的调制点附近的直接波组合。 也就是说,由于可以精确地检测直接波的调制点,所以可以测量发射波的调制点和接收波的调制点之间的时间间隔作为超声波的传播时间,从而能够准确地确定 气体浓度。
    • 8. 发明授权
    • Gas concentration sensor
    • 气体浓度传感器
    • US06418782B1
    • 2002-07-16
    • US09480663
    • 2000-01-11
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • G01N2902
    • G01N29/36G01N29/024G01N2291/011G01N2291/0215G01N2291/0258G01N2291/02809G01N2291/045
    • When a sensor has deteriorated, the propagation time T1′ of a first reflection wave becomes greater than the propagation time T1 of a first reflection wave as measured in a new sensor. If measurement of the concentration of a specific gas is based on the propagation time T1 of the first reflection wave as measured in the new sensor, gas concentration cannot be determined accurately. By contrast, a reflection wave other than the first reflection wave (for example, a second reflection wave) is merely reflected off the surface of the ultrasonic element and is not affected by the internal structure of the ultrasonic element. Therefore, even when the sensor is deteriorated, the propagation time T2, T2′ of the second reflection wave exhibits less variation and is less susceptible to deterioration of the sensor. Therefore, the concentration of a specific gas is determined on the basis of the propagation time of the second reflection wave, which is less susceptible to deterioration of the sensor, instead of the propagation time of the first reflection wave, which is more susceptible to deterioration of the sensor. Thus, gas concentration can be measured accurately.
    • 当传感器恶化时,第一反射波的传播时间T1'变得大于在新传感器中测量的第一反射波的传播时间T1。 如果特定气体的浓度的测定是基于在新传感器中测定的第一反射波的传播时间T1,则不能准确地确定气体浓度。 相反,除了第一反射波(例如,第二反射波)之外的反射波仅仅从超声波元件的表面反射,并且不受超声波元件的内部结构的影响。 因此,即使在传感器劣化的情况下,第二反射波的传播时间T2'T2'变化较小,也不易受传感器劣化的影响。 因此,特定气体的浓度基于不易受传感器劣化的第二反射波的传播时间而不是更容易劣化的第一反射波的传播时间而确定 的传感器。 因此,可以准确测量气体浓度。
    • 9. 发明授权
    • Method and apparatus using a gas concentration sensor for accurately controlling an air fuel ratio in an internal combustion engine
    • 使用气体浓度传感器来精确地控制内燃机的空燃比的方法和装置
    • US06568240B1
    • 2003-05-27
    • US09480661
    • 2000-01-11
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • G01N2726
    • F02D41/1459F02D41/0042F02D41/0045F02D41/144F02D41/2441F02D41/2474F02D2200/0614G01N2291/02809
    • The present invention provides a method and apparatus using a gas concentration sensor for accurately controlling an air fuel ratio in an internal combustion engine, featuring in that before the fuel-vaporized gas purged from the canister enters into the intake manifold whereat the sensor detects the gas concentration of the purged gas, the sensor is adjusted so as to adjust a zero point (or zero output level) of the sensor output. In step 100 of FIG. 7, a judgment is made as to whether the flow rate of air reaches a predetermined level. In step 110, processing for zero-point correction of the gas concentration sensor is performed. Specifically, in a state in which the purge valve 17 is closed, concentration of purge gas is measured by use of the gas concentration sensor 4, and a sensor output S1 at that time is obtained. Subsequently, the sensor output S1 is compared with a correct sensor output S0 in order to obtain a difference &Dgr;S therebetween. Accordingly, during subsequent gas concentration measurement, a value S3 obtained through subtraction of the difference &Dgr;S from an obtained sensor output S2 is used as a correct sensor output. In step 120, a supply amount of purge gas, i.e., a concentration of the purge gas to be supplied is obtained. In subsequent step 130, the purge valve 17 is driven in order to supply purge gas to the intake pipe 2 in a required amount (A%).
    • 本发明提供了一种使用气体浓度传感器来精确地控制内燃机中的空燃比的方法和装置,其特征在于在从罐排出的燃料汽化气体进入进气歧管之前,传感器检测到气体 净化气体的浓度,调节传感器以调节传感器输出的零点(或零输出水平)。 在图1的步骤100中 如图7所示,判断空气流量是否达到预定水平。 在步骤110中,进行气体浓度传感器的零点校正处理。 具体地说,在关闭吹扫阀17的状态下,利用气体浓度传感器4测定净化气体的浓度,得到此时的传感器输出S1。 随后,将传感器输出S1与正确的传感器输出S0进行比较,以获得它们之间的差值DELTAS。 因此,在后续的气体浓度测量中,使用通过从获得的传感器输出S2中减去差值DELTAS获得的值S3作为正确的传感器输出。 在步骤120中,获得净化气体的供给量,即所供给的净化气体的浓度。 在随后的步骤130中,驱动排气阀17,以便以所需量(A%)向进气管2供应净化气体。
    • 10. 发明授权
    • Gas sensor
    • 气体传感器
    • US07416651B2
    • 2008-08-26
    • US10767180
    • 2004-01-30
    • Hideki IshikawaShoji KitanoyaTakeshi MoritaNoboru Ishida
    • Hideki IshikawaShoji KitanoyaTakeshi MoritaNoboru Ishida
    • G01N27/407
    • G01N33/005
    • There is provided a gas sensor for measuring the concentration of a specific gas component in a gas under measurement, including a gas diffusion rate limiting portion, a measurement chamber communicating with an atmosphere of the gas under measurement through the gas diffusion rate limiting portion, a sensor element having an ion-conductive layer with first and second surfaces, a first electrode disposed in contact with the first surface of the ion-conductive layer within the measurement chamber and a second electrode disposed in contact with the second surface of the ion-conductive layer and communicating exclusively with the atmosphere of the gas under measurement and a cylindrical support member installing therein the sensor element with the first and second surfaces of the ion-conductive layer directed toward front and base end sides of the support member, respectively.
    • 提供了一种气体传感器,用于测量被测气体中的特定气体成分的浓度,包括气体扩散速率限制部分,与通过气体扩散速率限制部分测量的气体的气氛连通的测量室, 传感器元件,其具有带有第一和第二表面的离子传导层,与测量室内的离子传导层的第一表面接触的第一电极和设置成与离子导电层的第二表面接触的第二电极 并且与被测量气体的气氛完全通信,并且其中安装有传感器元件的圆柱形支撑构件,离子传导层的第一和第二表面分别指向支撑构件的前端侧和基端侧。