会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHODS AND DEVICES FOR LARGE-SCALE SOLAR INSTALLATIONS
    • 大规模太阳能安装的方法和设备
    • US20080041434A1
    • 2008-02-21
    • US11465787
    • 2006-08-18
    • Paul AdrianiMartin Roscheisen
    • Paul AdrianiMartin Roscheisen
    • H01L31/042B23K3/00
    • H01L31/02013B23K31/02B23K2101/18H01L31/048H02S40/36Y02E10/50
    • Methods and devices are provided for improved large-scale solar installations. In one embodiment, a junction-box free photovoltaic module is used comprising of a plurality of photovoltaic cells and a module support layer providing a mounting surface for the cells. The module has a first electrical lead extending outward from one of the photovoltaic cells, the lead coupled to an adjacent module without passing the lead through a junction box. The module may have a second electrical lead extending outward from one of the photovoltaic cells, the lead coupled to another adjacent module without passing the lead through a junction box. Without junction boxes, the module may use connectors along the edges of the modules which can substantially reduce the amount of wire or connector ribbon used for such connections.
    • 提供了改进的大型太阳能装置的方法和装置。 在一个实施例中,使用无接线盒的光伏模块,其包括多个光伏电池和为电池提供安装表面的模块支撑层。 模块具有从一个光伏电池向外延伸的第一电引线,引线耦合到相邻的模块,而不使引线通过接线盒。 该模块可以具有从一个光伏电池向外延伸的第二电引线,该引线耦合到另一个相邻的模块,而不使引线通过接线盒。 没有接线盒,模块可以使用沿着模块边缘的连接器,其可以显着地减少用于这种连接的线或连接器带的数量。
    • 2. 发明授权
    • Method of packaging solar modules
    • 太阳能组件封装方法
    • US07658055B1
    • 2010-02-09
    • US11537657
    • 2006-10-01
    • Paul AdrianiMartin Roscheisen
    • Paul AdrianiMartin Roscheisen
    • B65B5/10B65B23/00
    • B65B23/20B65D85/48
    • Methods and devices are provided for reducing wasted space and capacity in solar module assemblies. In one embodiment, the method comprises mounting a plurality of modules onto at least one support rail to define a solar assembly segment wherein the solar assembly segment has a length of no more than about half the interior length of the shipping container used to ship the segment. The solar modules each have a weight less than about 20 kg and a length between about 1660 mm and about 1666 mm, and a width between about 700 mm and about 706 mm. In one embodiment, the length of the solar modules is limited by the longest support beam that may fit in a shipping container, which in one example is about 11,720 mm. The modules are also limited so that they can be limited to weighing no more than about 20 kg. In one embodiment, the module may be sized to provide at least 80 watts of power at AM 1.5 G. In another embodiment, the module may be sized to provide at least 90 watts of power at AM 1.5 G. In another embodiment, the module may be sized to provide at least 100 watts of power at AM 1.5 G. In another embodiment, the module may be sized to provide at least 110 watts of power at AM 1.5 G.
    • 提供了减少太阳能模块组件浪费的空间和容量的方法和装置。 在一个实施例中,该方法包括将多个模块安装在至少一个支撑轨道上以限定太阳能组件段,其中太阳能组件段的长度不超过用于运送段的运输容器的内部长度的大约一半 。 太阳能模块各自具有小于约20kg的重量和约1660mm至约1666mm之间的长度以及约700mm至约706mm之间的宽度。 在一个实施例中,太阳能模块的长度受到可以装配在运输容器中的最长支撑梁的限制,在一个示例中为约11,720mm。 模块也受到限制,因此它们可以限制在不超过约20kg的重量。 在一个实施例中,模块的尺寸可以设定为在AM1.5G提供至少80瓦的功率。在另一个实施例中,模块的尺寸可以设定为在AM1.5G提供至少90瓦的功率。在另一实施例中,模块 尺寸可以设定为在AM1.5G提供至少100瓦的功率。在另一个实施例中,模块的尺寸可以设定为在AM1.5G提供至少110瓦的功率。
    • 4. 发明申请
    • SERIES INTERCONNECTED OPTOELECTRONIC DEVICE MODULE ASSEMBLY
    • 系列互连光电器件模块组件
    • US20080020503A1
    • 2008-01-24
    • US11865691
    • 2007-10-01
    • James SheatsSam KaoGregory MillerMartin Roscheisen
    • James SheatsSam KaoGregory MillerMartin Roscheisen
    • H01L21/00
    • H01L31/0392H01L27/3204H01L31/03925H01L31/03928H01L31/046H01L31/0465H01L31/0749H01L31/18H01L51/5203Y02E10/541Y02P70/521
    • Series interconnection of optoelectronic device modules is disclosed. Each device module includes an active layer disposed between a bottom electrode and a transparent conducting layer. An insulating layer is disposed between the bottom electrode of a first device module and a backside top electrode of the first device module. One or more vias are formed through the active layer, transparent conducting layer and insulating layer of the first device module. Sidewalls of the vias are coated with an insulating material such that a channel is formed through the insulating material to the backside top electrode of the first device module. The channel is at least partially filled with an electrically conductive material to form a plug that makes electrical contact between the transparent conducting layer and the backside top electrode of the first device module. Portions of the backside top electrode and insulating layer of a second device module are cut back to expose a portion of the bottom electrode of the second device module. The first and second device modules are attached to an insulating carrier substrate. Electrical contact is made between the backside top electrode of the first device module and the exposed portion of the bottom electrode of the second device module.
    • 公开了光电器件模块的串联互连。 每个器件模块包括设置在底部电极和透明导电层之间的有源层。 绝缘层设置在第一器件模块的底部电极和第一器件模块的背面顶部电极之间。 通过第一器件模块的有源层,透明导电层和绝缘层形成一个或多个通孔。 通孔的侧壁涂覆有绝缘材料,使得通过绝缘材料形成通道到第一器件模块的背面顶部电极。 通道至少部分地填充有导电材料以形成在第一器件模块的透明导电层和背面顶部电极之间形成电接触的插塞。 背面顶部电极和第二器件模块的绝缘层的部分被切割以暴露第二器件模块的底部电极的一部分。 第一和第二器件模块附接到绝缘载体衬底。 在第一器件模块的背面顶部电极和第二器件模块的底部电极的暴露部分之间形成电接触。
    • 5. 发明申请
    • Optoelectronic device and fabrication method
    • 光电器件及其制造方法
    • US20070181177A9
    • 2007-08-09
    • US10290119
    • 2002-11-05
    • Brian SagerMartin RoscheisenKlaus PetritschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • Brian SagerMartin RoscheisenKlaus PetritschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • H01L31/00
    • H01L51/4226H01L51/0034H01L51/0035H01L51/0036H01L51/0038H01L51/0052H01L51/0053H01L51/0064H01L51/0078H01L51/4253Y02E10/549Y02P70/521
    • Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling, material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly. A solar power generation system may include an array of such optoelectronic devices in the form of photovoltaic cells with one or more cells in the array having one or more porous charge-splitting networks disposed between an electron-accepting electrode and a hole-accepting electrode.
    • 公开了电荷分解网络,光电子器件,制造光电器件的方法,利用这种器件的发电系统以及用于制造电荷分解网络的方法。 光电子器件可以包括具有互连孔的多孔纳米结构(例如,表面活性剂模板化)膜,其可以从下面的层和上层两者接近。 孔填充材料基本上填充孔。 相互连通的孔具有大约1-100nm的直径,并以基本上均匀的方式分布,其中相邻的孔分开约1-100nm的距离。 纳米结构的多孔膜和孔填充材料相对于彼此具有互补的电荷转移性质,即一个是电子受体,另一个是空穴受体。 纳米结构的多孔膜可以通过表面活性剂诱导技术如蒸发诱导的自组装形成在基底上。 太阳能发电系统可以包括光伏电池形式的这种光电子器件的阵列,阵列中的一个或多个电池具有设置在电子接受电极和空穴接受电极之间的一个或多个多孔电荷分解网络。
    • 7. 发明申请
    • Series interconnected optoelectronic device module assembly
    • 系列互连光电器件组件
    • US20060160261A1
    • 2006-07-20
    • US11039053
    • 2005-01-20
    • James SheatsSam KaoGregory MillerMartin Roscheisen
    • James SheatsSam KaoGregory MillerMartin Roscheisen
    • H01L21/00
    • H01L31/0392H01L27/3204H01L31/03925H01L31/03928H01L31/046H01L31/0465H01L31/0749H01L31/18H01L51/5203Y02E10/541Y02P70/521
    • Series interconnection of optoelectronic device modules is disclosed. Each device module includes an active layer disposed between a bottom electrode and a transparent conducting layer. An insulating layer is disposed between the bottom electrode of a first device module and a backside top electrode of the first device module. One or more vias are formed through the active layer, transparent conducting layer and insulating layer of the first device module. Sidewalls of the vias are coated with an insulating material such that a channel is formed through the insulating material to the backside top electrode of the first device module. The channel is at least partially filled with an electrically conductive material to form a plug that makes electrical contact between the transparent conducting layer and the backside top electrode of the first device module. Portions of the backside top electrode and insulating layer of a second device module are cut back to expose a portion of the bottom electrode of the second device module. The first and second device modules are attached to an insulating carrier substrate. Electrical contact is made between the backside top electrode of the first device module and the exposed portion of the bottom electrode of the second device module.
    • 公开了光电器件模块的串联互连。 每个器件模块包括设置在底部电极和透明导电层之间的有源层。 绝缘层设置在第一器件模块的底部电极和第一器件模块的背面顶部电极之间。 通过第一器件模块的有源层,透明导电层和绝缘层形成一个或多个通孔。 通孔的侧壁涂覆有绝缘材料,使得通过绝缘材料形成通道到第一器件模块的背面顶部电极。 通道至少部分地填充有导电材料,以形成在第一器件模块的透明导电层和背面顶部电极之间形成电接触的插塞。 背面顶部电极和第二器件模块的绝缘层的部分被切割以暴露第二器件模块的底部电极的一部分。 第一和第二器件模块附接到绝缘载体衬底。 在第一器件模块的背面顶部电极和第二器件模块的底部电极的暴露部分之间形成电接触。
    • 9. 发明申请
    • Optoelectronic device and frabrication method
    • 光电器件及其制造方法
    • US20060174934A1
    • 2006-08-10
    • US11375413
    • 2006-03-13
    • Brian SagerMartin RoscheisenKlaus PetristschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • Brian SagerMartin RoscheisenKlaus PetristschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • H01L31/042H01L31/00
    • H01L51/4226H01L51/0034H01L51/0035H01L51/0036H01L51/0038H01L51/0052H01L51/0053H01L51/0064H01L51/0078H01L51/4253Y02E10/549Y02P70/521
    • Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly. A solar power generation system may include an array of such optoelectronic devices in the form of photovoltaic cells with one or more cells in the array having one or more porous charge-splitting networks disposed between an electron-accepting electrode and a hole-accepting electrode.
    • 公开了电荷分解网络,光电子器件,制造光电器件的方法,利用这种器件的发电系统以及用于制造电荷分解网络的方法。 光电子器件可以包括具有互连孔的多孔纳米结构(例如,表面活性剂模板化)膜,其可以从下面的层和上层两者接近。 孔填充材料基本上填充孔。 相互连通的孔具有大约1-100nm的直径,并以基本上均匀的方式分布,其中相邻的孔分开约1-100nm的距离。 纳米构造的多孔膜和孔隙填充材料相互之间具有互补的电荷转移性质,即一个是电子受体,另一个是空穴受体。 纳米结构的多孔膜可以通过表面活性剂诱导技术如蒸发诱导的自组装形成在基底上。 太阳能发电系统可以包括光伏电池形式的这种光电子器件的阵列,阵列中的一个或多个电池具有设置在电子接受电极和空穴接受电极之间的一个或多个多孔电荷分解网络。