会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
    • 半导体前体层从金属间微纳米颗粒的高通量印刷
    • US20070163641A1
    • 2007-07-19
    • US11394849
    • 2006-03-30
    • Jeroen DurenMatthew RobinsonBrian Sager
    • Jeroen DurenMatthew RobinsonBrian Sager
    • H01L31/00
    • H01L31/0322C23C18/1204H01L31/0749H01L31/18Y02E10/541
    • Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices. In one embodiment, at least one set of the particles in the ink may be inter-metallic flake particles (microflake or nanoflake) containing at least one group IB-IIIA inter-metallic alloy phase.
    • 提供了用于在合适的条件下在合适的载体中转化非平面或平面前体材料的方法和装置,以产生具有等于原料或前体材料的化学计量比的化学计量比的平面颗粒的分散体,即使在选择性力沉降之后。 特别地,平面颗粒更容易分散,形成更致密的涂层(或形成具有更多颗粒间接触面积的涂层),并在比球形纳米颗粒制成的对应物更低的温度和/或时间下退火成熔融的致密膜。 这些平面颗粒可以是具有高纵横比的纳米片。 由纳米片形成的致密膜特别适用于形成光电器件。 在一个实施方案中,油墨中的至少一组颗粒可以是含有至少一种IB-IIIA族金属间合金相的金属间薄片(微花纹或纳米薄片)。
    • 3. 发明申请
    • Optoelectronic device and frabrication method
    • 光电器件及其制造方法
    • US20060174934A1
    • 2006-08-10
    • US11375413
    • 2006-03-13
    • Brian SagerMartin RoscheisenKlaus PetristschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • Brian SagerMartin RoscheisenKlaus PetristschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • H01L31/042H01L31/00
    • H01L51/4226H01L51/0034H01L51/0035H01L51/0036H01L51/0038H01L51/0052H01L51/0053H01L51/0064H01L51/0078H01L51/4253Y02E10/549Y02P70/521
    • Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly. A solar power generation system may include an array of such optoelectronic devices in the form of photovoltaic cells with one or more cells in the array having one or more porous charge-splitting networks disposed between an electron-accepting electrode and a hole-accepting electrode.
    • 公开了电荷分解网络,光电子器件,制造光电器件的方法,利用这种器件的发电系统以及用于制造电荷分解网络的方法。 光电子器件可以包括具有互连孔的多孔纳米结构(例如,表面活性剂模板化)膜,其可以从下面的层和上层两者接近。 孔填充材料基本上填充孔。 相互连通的孔具有大约1-100nm的直径,并以基本上均匀的方式分布,其中相邻的孔分开约1-100nm的距离。 纳米构造的多孔膜和孔隙填充材料相互之间具有互补的电荷转移性质,即一个是电子受体,另一个是空穴受体。 纳米结构的多孔膜可以通过表面活性剂诱导技术如蒸发诱导的自组装形成在基底上。 太阳能发电系统可以包括光伏电池形式的这种光电子器件的阵列,阵列中的一个或多个电池具有设置在电子接受电极和空穴接受电极之间的一个或多个多孔电荷分解网络。
    • 5. 发明申请
    • Optoelectronic device and fabrication method
    • 光电器件及其制造方法
    • US20070181177A9
    • 2007-08-09
    • US10290119
    • 2002-11-05
    • Brian SagerMartin RoscheisenKlaus PetritschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • Brian SagerMartin RoscheisenKlaus PetritschGreg SmestadJacqueline FidanzaGregory MillerDong Yu
    • H01L31/00
    • H01L51/4226H01L51/0034H01L51/0035H01L51/0036H01L51/0038H01L51/0052H01L51/0053H01L51/0064H01L51/0078H01L51/4253Y02E10/549Y02P70/521
    • Charge-splitting networks, optoelectronic devices, methods for making optoelectronic devices, power generation systems utilizing such devices and method for making charge-splitting networks are disclosed. An optoelectronic device may include a porous nano-architected (e.g., surfactant-templated) film having interconnected pores that are accessible from both the underlying and overlying layers. A pore-filling material substantially fills the pores. The interconnected pores have diameters of about 1-100 nm and are distributed in a substantially uniform fashion with neighboring pores separated by a distance of about 1-100 nm. The nano-architected porous film and the pore-filling, material have complementary charge-transfer properties with respect to each other, i.e., one is an electron-acceptor and the other is a hole-acceptor. The nano-architected porous, film may be formed on a substrate by a surfactant temptation technique such as evaporation-induced self-assembly. A solar power generation system may include an array of such optoelectronic devices in the form of photovoltaic cells with one or more cells in the array having one or more porous charge-splitting networks disposed between an electron-accepting electrode and a hole-accepting electrode.
    • 公开了电荷分解网络,光电子器件,制造光电器件的方法,利用这种器件的发电系统以及用于制造电荷分解网络的方法。 光电子器件可以包括具有互连孔的多孔纳米结构(例如,表面活性剂模板化)膜,其可以从下面的层和上层两者接近。 孔填充材料基本上填充孔。 相互连通的孔具有大约1-100nm的直径,并以基本上均匀的方式分布,其中相邻的孔分开约1-100nm的距离。 纳米结构的多孔膜和孔填充材料相对于彼此具有互补的电荷转移性质,即一个是电子受体,另一个是空穴受体。 纳米结构的多孔膜可以通过表面活性剂诱导技术如蒸发诱导的自组装形成在基底上。 太阳能发电系统可以包括光伏电池形式的这种光电子器件的阵列,阵列中的一个或多个电池具有设置在电子接受电极和空穴接受电极之间的一个或多个多孔电荷分解网络。