会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Transistors having a scaled channel length and integrated spacers with
enhanced silicidation properties
    • 具有缩放沟道长度的晶体管和具有增强的硅化特性的集成间隔物
    • US6018179A
    • 2000-01-25
    • US187028
    • 1998-11-05
    • Mark I. GardnerFred N. HauseDerick J. Wristers
    • Mark I. GardnerFred N. HauseDerick J. Wristers
    • H01L21/28H01L21/311H01L21/321H01L21/336H01L29/423H01L29/51H01L27/088
    • H01L21/28194H01L21/28114H01L21/28123H01L21/28202H01L21/31116H01L29/42376H01L29/513H01L29/518H01L29/66583H01L29/6659H01L21/3212Y10S257/90
    • A high speed MOS device has a scaled channel length and integrated spacers. The MOS device is formed on a substrate having active and isolation regions. In constructing the MOS device wells and Vt regions are formed as required. Then, a thin nitride layer is formed upon the substrate. Subsequently, an oxide layer is formed upon the nitride layer. Then, the oxide layer is pattern masked to expose gate regions. The gate regions are sloped etched to form slope etched voids. The slope etching may proceed to the nitride layer, through a portion of the nitride layer or fully through the nitride layer, depending upon the embodiment. In another embodiment, the nitride layer is not deposed and the oxide layer is either fully or partially slope etched to the silicon substrate. The patterned mask is then removed and remaining portions of the nitride layer may be converted to an oxynitride. Additionally, a gate oxide may be formed. The slope etched void is then filled with a gate conductor and the surface is planarized in a CMP process. The gate conductor then has a shape wherein its lower surface is smaller than its upper surface. Then, the substrate is isotropically etched to remove portions of the oxide layer and nitride layer unprotected by the gate conductor. The remaining structure includes integrally formed spacers. Active regions, LDD regions and punchthrough regions are then formed to complete formation of the transistor.
    • 高速MOS器件具有缩放的沟道长度和集成间隔物。 MOS器件形成在具有有源和隔离区域的衬底上。 在构建MOS器件时,根据需要形成Vt区域。 然后,在基板上形成薄的氮化物层。 随后,在氮化物层上形成氧化物层。 然后,将氧化层图案掩模以露出栅极区域。 栅极区被倾斜蚀刻以形成斜坡蚀刻的空隙。 根据实施例,倾斜蚀刻可以通过氮化物层的一部分或完全通过氮化物层而进行到氮化物层。 在另一个实施例中,氮化物层不被沉积,并且氧化物层被完全或部分地倾斜蚀刻到硅衬底。 然后去除图案化掩模,并且可以将氮化物层的剩余部分转化为氮氧化合物。 另外,可以形成栅极氧化物。 然后用栅极导体填充斜面蚀刻的空隙,并且在CMP工艺中平坦化表面。 然后,栅极导体具有其下表面小于其上表面的形状。 然后,各向同性蚀刻衬底,以除去未被栅极导体保护的氧化物层和氮化物层的部分。 其余结构包括一体形成的间隔物。 然后形成有源区,LDD区和穿透区,以完成晶体管的形成。
    • 2. 发明授权
    • Method for forming metal silicide on a semiconductor surface with
minimal effect on pre-existing implants
    • 在半导体表面上形成金属硅化物的方法,对预先存在的植入物具有最小的影响
    • US5679585A
    • 1997-10-21
    • US746774
    • 1996-11-15
    • Mark I. GardnerFred N. HauseDerick J. WristersDim-Lee Kwong
    • Mark I. GardnerFred N. HauseDerick J. WristersDim-Lee Kwong
    • H01L21/285H01L21/283
    • H01L21/28518Y10S438/909
    • An method is provided for fabricating a metal silicide upon a semiconductor topography. The method advantageously performs the anneal cycles at a substantially lower temperature. By employing a high pressure anneal chamber, temperature equilibrium is achieved across the semiconductor topography and especially in small silicide formation areas. The higher pressure helps ensure thermal contact of heated, flowing gas across relatively small geometries in which silicide is to be formed. Substantial metal silicide formation can occur at the higher pressures even under relatively lower temperature conditions. The lower temperature process helps ensure that pre-existing implant regions remain at their initial position. The present metal silicide process and lower temperature anneal is therefore well suited to avoid impurity migration problems such as, for example, threshold skew, parasitic junction capacitance enhancement, and gate oxide degradation.
    • 提供了一种在半导体形貌上制造金属硅化物的方法。 该方法有利地在基本上较低的温度下进行退火循环。 通过采用高压退火室,在半导体形貌特别是在小的硅化物形成区域中实现了温度平衡。 较高的压力有助于确保加热的流动气体在要形成硅化物的较小几何形状上的热接触。 即使在相对较低的温度条件下,也可能在更高的压力下发生大量金属硅化物的形成。 较低的温度过程有助于确保预先存在的植入区域保持在其初始位置。 因此,目前的金属硅化物工艺和较低温度退火非常适合于避免杂质迁移问题,例如阈值偏移,寄生结电容增强和栅极氧化物降解。
    • 3. 发明授权
    • High density integrated circuit
    • US06365943B1
    • 2002-04-02
    • US09157644
    • 1998-09-21
    • Mark I. GardnerDaniel KadoshFred N. Hause
    • Mark I. GardnerDaniel KadoshFred N. Hause
    • H01L2976
    • H01L21/823437Y10S438/947
    • A semiconductor transistor which includes a silicon base layer, a gate dielectric formed on the silicon base layer, first and second silicon source/drain structures, first and second spacer structures, and a silicon gate structure is provided. A method for forming the semiconductor transistor may include a semiconductor process in which a dielectric layer is formed on an upper surface of a semiconductor substrate which includes a silicon base layer. Thereafter, an upper silicon layer is formed on an upper surface of the dielectric layer. The dielectric layer and the upper silicon layer are then patterned to form first and second silicon-dielectric stacks on the upper surface of the base silicon layer. The first and second silicon-dielectric stacks are laterally displaced on either side of a channel region of the silicon substrate and each include a proximal sidewall and a distal sidewall. The proximal sidewalls are approximately coincident with respective boundaries of the channel region. Thereafter, proximal and distal spacer structures are formed on the proximal and distal sidewalls respectively of the first and second silicon-dielectric stacks. A gate dielectric layer is then formed on exposed portions of the silicon base layer over a channel region of the base silicon layer. Portions of the first and second silicon-dielectric stacks located over respective source/drain regions of the base silicon layer are then selectively removed. Silicon is then deposited to fill first and second voids created by the selected removal of the stacks. The silicon deposition also fills a silicon gate region above the gate dielectric over the channel region. Thereafter, an impurity distribution is introduced into the deposited silicon. The deposited silicon is then planarized to physically isolate the silicon within the gate region from the silicon within the first and second voids resulting in the formation of a transistor including a silicon gate structure and first and second source/drain structures.
    • 4. 发明授权
    • Spacer formation for precise salicide formation
    • 间歇形成精确的自杀化合物形成
    • US06323561B1
    • 2001-11-27
    • US08987455
    • 1997-12-09
    • Mark I. GardnerFred N. HauseCharles E. May
    • Mark I. GardnerFred N. HauseCharles E. May
    • H01L27088
    • H01L29/66598H01L21/266H01L29/665H01L29/6659H01L29/7833
    • The formation of a spacer for precise salicide formation is disclosed. In one embodiment, a method includes four steps. In the first step, at least one first spacer is formed, where each spacer is adjacent to an edge of a gate on a substrate and has a triangular geometry. In the second step, an ion implantation is applied to form a graded lightly doped region within the substrate underneath each spacer, the region corresponding to the triangular geometry of the spacer. In the third step, at least one second spacer is formed, where each second spacer overlaps a corresponding first spacer. In the fourth step, a metal silicide within the substrate is formed immediately adjacent to each second spacer.
    • 公开了形成用于精确的自对准硅化物形成的间隔物。 在一个实施例中,一种方法包括四个步骤。 在第一步骤中,形成至少一个第一间隔物,其中每个间隔物邻近衬底上的栅极的边缘并且具有三角形几何形状。 在第二步骤中,施加离子注入以在每个间隔物下面的衬底内形成渐变的轻掺杂区域,该区域对应于间隔物的三角形几何形状。 在第三步骤中,形成至少一个第二间隔物,其中每个第二间隔物与相应的第一间隔物重叠。 在第四步骤中,衬底内的金属硅化物紧邻每个第二间隔物形成。
    • 5. 发明授权
    • Test structure to determine the effect of LDD length upon transistor
performance
    • 测试结构,以确定LDD长度对晶体管性能的影响
    • US6121631A
    • 2000-09-19
    • US267444
    • 1999-03-12
    • Mark I GardnerFred N. HauseH. Jim Fulford, Jr.
    • Mark I GardnerFred N. HauseH. Jim Fulford, Jr.
    • H01L21/336H01L23/544H01L29/78H01L23/58H01L27/088H01L31/119
    • H01L29/6659H01L22/34H01L29/6656H01L29/7833H01L2924/0002Y10S257/90
    • The present invention advantageously provides a method for forming a test structure for determining how LDD length of a transistor affects transistor characteristics. In one embodiment, a first polysilicon gate conductor is provided which is laterally spaced from a second polysilicon gate conductor. The gate conductors are each disposed upon a gate oxide lying above a silicon-based substrate. An LDD implant is forwarded into exposed regions of the substrate to form LDD areas within the substrate adjacent to the gate conductors. A first spacer material is then formed upon sidewall surfaces of both gate conductors to a first pre-defined thickness. Source/drain regions are formed exclusively within the substrate a spaced distance from the first gate conductor, the spaced distance being dictated by the first pre-defined thickness. A second spacer material is formed laterally adjacent to the first spacer material to a second pre-defined distance. Source/drain regions are then formed within the substrate a spaced distance from the second gate conductor, the spaced distance being dictated by the second predefined thickness. The resulting transistors have a mutual source/drain region between them. More transistors may also be fabricated in a similar manner.
    • 本发明有利地提供了一种用于形成用于确定晶体管的LDD长度如何影响晶体管特性的测试结构的方法。 在一个实施例中,提供了与第二多晶硅栅极导体横向间隔开的第一多晶硅栅极导体。 栅极导体各自设置在位于硅基衬底之上的栅极氧化物上。 将LDD植入物转移到衬底的暴露区域中,以在邻近栅极导体的衬底内形成LDD区域。 然后将第一间隔物材料形成在两个栅极导体的侧壁表面上至第一预定义的厚度。 源极/漏极区域仅在衬底内形成与第一栅极导体间隔开的距离,间隔距离由第一预定义厚度决定。 第二间隔物材料横向地邻近第一间隔物材料形成为第二预定距离。 源极/漏极区域然后在衬底内形成与第二栅极导体间隔开的距离,间隔距离由第二预定厚度决定。 所得的晶体管在它们之间具有相互的源极/漏极区域。 也可以以类似的方式制造更多的晶体管。
    • 6. 发明授权
    • Semiconductor device with layered doped regions and methods of
manufacture
    • 具有分层掺杂区域的半导体器件和制造方法
    • US6117739A
    • 2000-09-12
    • US166000
    • 1998-10-02
    • Mark I. GardnerFred N. HauseCharles E. May
    • Mark I. GardnerFred N. HauseCharles E. May
    • H01L21/266H01L21/336H01L29/10H01L29/49
    • H01L29/66583H01L21/266H01L29/1083H01L29/4966H01L29/66537
    • A semiconductor device can be formed with active regions disposed in a substrate adjacent to a gate electrode and a doped region, of the same conductivity type as the active regions, embedded beneath the channel region defined by the active regions. In one embodiment, a patterned masking layer having at least one opening is formed over the substrate. A dopant material is implanted into the substrate using the masking layer to form active regions adjacent to the opening and an embedded doped region that is between and spaced apart from the active regions and is deeper in the substrate then the active regions. In addition or alternatively, spacer structures can be formed on the gate electrode by forming a conformal dielectric layer along a bottom surface and at least one sidewall of the opening and forming a gate electrode in the opening over the dielectric layer. The masking layer is then removed to leave the dielectric layer between the gate electrode and the substrate and as spacer structures on the sidewalls of the gate electrode.
    • 可以形成半导体器件,该有源区域设置在与由栅极电极相邻的衬底中的有源区域和与有源区域相同的导电类型的掺杂区域,嵌入在由有源区域限定的沟道区域的下面。 在一个实施例中,在衬底上形成具有至少一个开口的图案化掩模层。 使用掩模层将掺杂剂材料注入到衬底中以形成与开口相邻的有源区和位于有源区之间并且与有源区间隔开的嵌入的掺杂区,并且在衬底中更深的是有源区。 另外或替代地,可以通过沿着底表面和开口的至少一个侧壁形成保形电介质层并在电介质层上的开口中形成栅电极,在栅电极上形成间隔结构。 然后去除掩模层以在栅电极和衬底之间留下介电层,并且作为栅电极的侧壁上的间隔结构。
    • 7. 发明授权
    • Asymmetrical transistor structure
    • 不对称晶体管结构
    • US6104064A
    • 2000-08-15
    • US306508
    • 1999-05-06
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • H01L21/28H01L21/336H01L29/78H01L29/76
    • H01L21/28211H01L21/28176H01L29/66659H01L29/7835
    • Various processes are provided for producing a p-channel and/or n-channel transistor. The present processes are thereby applicable to NMOS, PMOS or CMOS integrated circuits, any of which derive a benefit from having an asymmetrical LDD structure. The asymmetrical structure can be produced on a p-channel or n-channel transistor in various ways. According, the present process employs various techniques to form an asymmetrical transistor. The various techniques employ processing steps which vary depending upon the LDD result desired. First, the LDD implant can be performed only in the drain-side of the channel, or in the drain-side as well as the source-side. Second, the gate conductor sidewall surface adjacent the drain can be made thicker than the sidewall surface adjacent the source. Thickening of the drain-side sidewall spacer can be achieved either by depositing oxide upon a nitride-bearing film, or by growing additional oxide upon an exposed silicon surface having the source-side sidewall protected from growth. Third, the drain-side can be enhanced relative to the source-side by using an LTA implant. There may be numerous other modifications and alternative processing steps, all of which are described herein. Regardless of the sequence chosen, a barrier implant may be employed to prevent deleterious ingress of p-type implant species into the channel region. The present fabrication sequence reduces source-side resistance to enhance drive current--a desirable outcome for high speed circuits.
    • 提供了用于产生p沟道和/或n沟道晶体管的各种工艺。 因此,本发明的方法可应用于NMOS,PMOS或CMOS集成电路,其中任何一种从具有不对称的LDD结构中获益。 可以以各种方式在p沟道或n沟道晶体管上产生非对称结构。 据此,本方法采用各种技术形成不对称晶体管。 各种技术采用根据​​所需LDD结果而变化的处理步骤。 首先,LDD注入仅能够在沟道的漏极侧,或者在漏极侧以及源极侧进行。 第二,与漏极相邻的栅极导体侧壁表面可以制成比邻近源极的侧壁表面更厚。 漏极侧壁间隔物的增厚可以通过在氮化物承载膜上沉积氧化物,或通过在具有源极侧壁保护生长的暴露的硅表面上生长另外的氧化物来实现。 第三,可以通过使用LTA植入物相对于源极侧的漏极侧增强。 可以存在许多其它修改和替代的处理步骤,其全部在此描述。 不管选择的顺序如何,可以使用阻挡植入物来防止p型植入物质进入通道区域的有害进入。 本制造顺序降低了源极电阻以增强驱动电流 - 高速电路的期望结果。
    • 8. 发明授权
    • Transistor fabrication process employing a common chamber for gate oxide
and gate conductor formation
    • 晶体管制造工艺采用公共室进行栅极氧化和栅极导体的形成
    • US6087249A
    • 2000-07-11
    • US151075
    • 1998-09-10
    • Mark I. GardnerFred N. Hause
    • Mark I. GardnerFred N. Hause
    • C23C16/40C23C16/452H01L21/28H01L21/314H01L29/51H01L21/3205
    • H01L21/28202C23C16/402C23C16/452H01L21/28017H01L21/28035H01L21/3145H01L29/513H01L29/518H01L21/28185Y10S438/907Y10S438/908
    • An integrated circuit transistor is provided having a gate oxide and a gate conductor arranged upon a semiconductor topography, the gate oxide and gate conductor are formed within a common chamber. The initial semiconductor topography includes a silicon substrate having isolation regions disposed within its upper surface. The semiconductor topography may include an defined region, or well, doped opposite the substrate. The semiconductor topography is first placed in the common chamber. A separate chamber is operably placed gaseous communication with the common chamber. A plasma is created within the separate chamber, causing nitrogen, silicon, and oxygen containing compounds therein to form ions, molecular fragments, and excited molecules which are transported to the common chamber. The ions, molecular fragments, and excited molecules react and bombard the surface of the semiconductor topography to form an oxide layer thereon. The oxide layer is incorporated with nitrogen atoms which act as barrier atoms. Polysilicon is then deposited upon the oxide layer by CVD within the common chamber. The semiconductor topography is never exposed to ambient conditions outside the common chamber during and between the plasma oxide formation and the polysilicon deposition steps. Preventing ingress of outside ambient helps minimize contamination from entering the oxide. During the polysilicon deposition, dopant atoms are forwarded and become entrained within the polysilicon. The barrier atoms within the deposited oxide helps minimize dopant atoms from passing through the oxide and entering the channel below the oxide.
    • 提供一种集成电路晶体管,其具有栅极氧化物和布置在半导体形貌上的栅极导体,栅极氧化物和栅极导体形成在公共室内。 初始半导体形貌包括具有设置在其上表面内的隔离区的硅衬底。 半导体形貌可以包括与衬底相对掺杂的限定区域或阱。 首先将半导体形貌放置在公共室中。 独立的腔室可操作地与公共腔室气体连通。 在分离的室内产生等离子体,在其中产生氮,硅和含氧化合物,以形成被输送到公共室的离子,分子片段和被激发的分子。 离子,分子片段和激发的分子反应并轰击半导体形貌的表面以在其上形成氧化物层。 氧化物层与作为阻挡原子的氮原子结合。 然后通过CVD在公共室内将多晶硅沉积在氧化物层上。 在等离子体氧化物形成和多晶硅沉积步骤期间和之间,半导体形貌从未暴露于公共室外的环境条件。 防止外界进入有助于最大限度地减少进入氧化物的污染。 在多晶硅沉积期间,掺杂剂原子被转移并被夹带在多晶硅内。 沉积的氧化物内的阻挡原子有助于最小化掺杂剂原子通过氧化物并进入氧化物下方的通道。
    • 9. 发明授权
    • Poly recessed fabrication method for defining high performance MOSFETS
    • 用于定义高性能MOSFET的多凹陷制造方法
    • US5970354A
    • 1999-10-19
    • US987117
    • 1997-12-08
    • Fred N. HauseMark I. GardnerH. Jim Fulford, Jr.
    • Fred N. HauseMark I. GardnerH. Jim Fulford, Jr.
    • H01L21/28H01L21/336
    • H01L29/66583H01L21/28123
    • A method for forming a gate conductor by using a masking layer above a polysilicon layer to define the length of a gate is presented. The length of the gate may be adjusted by the use of spacers. The method includes forming a plurality of layers including a dielectric layer, a polysilicon layer and a masking layer. An opening is preferably formed in the masking layer, the opening defining the location of the gate conductor. The width of the opening may be narrowed by the use of spacers. A portion of the polysilicon layer defined by the opening is implanted with an n-type impurity. An oxide layer is formed over the implanted portion of the polysilicon layer. The polysilicon layer is etched such that a gate conductor is formed underneath the oxide layer. LDD areas and source/drain areas are subsequently formed adjacent to the gate conductor.
    • 提出了一种通过使用多晶硅层上面的掩模层来形成栅极导体的方法,以限定栅极的长度。 栅极的长度可以通过使用间隔物来调节。 该方法包括形成包括电介质层,多晶硅层和掩模层的多个层。 优选地,在掩模层中形成开口,该开口限定栅极导体的位置。 开口的宽度可以通过使用间隔物变窄。 由开口限定的多晶硅层的一部分注入n型杂质。 在多晶硅层的注入部分上形成氧化物层。 蚀刻多晶硅层,使得在氧化物层下方形成栅极导体。 随后在栅极导体附近形成LDD区域和源极/漏极区域。
    • 10. 发明授权
    • Stacked mask integration technique for advanced CMOS transistor formation
    • 叠层掩模集成技术,用于先进的CMOS晶体管形成
    • US5946579A
    • 1999-08-31
    • US987277
    • 1997-12-09
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • H01L21/28H01L21/3213H01L21/336
    • H01L29/66583H01L21/28052H01L21/28123H01L21/32137
    • A method for forming a gate conductor by using a masking layer above a polysilicon layer to define the length of a gate is presented. The length of the gate may be adjusted by the use of spacers. The method includes forming a plurality of layers including a dielectric layer, a polysilicon layer and a masking layer. An opening is preferably formed in the masking layer, the opening defining the location of the gate conductor. The width of the opening may be narrowed by the use of spacers. A portion of the polysilicon layer defined by the opening is implanted with an n-type impurity. A silicide layer is formed upon the upper surface of the exposed polysilicon layer. An oxide layer is formed over the silicide layer. The polysilicon layer is etched such that a gate conductor is formed underneath the oxide layer. LDD areas and source/drain areas are subsequently formed adjacent to the gate conductor.
    • 提出了一种通过使用多晶硅层上面的掩模层来形成栅极导体的方法,以限定栅极的长度。 栅极的长度可以通过使用间隔物来调节。 该方法包括形成包括电介质层,多晶硅层和掩模层的多个层。 优选地,在掩模层中形成开口,该开口限定栅极导体的位置。 开口的宽度可以通过使用间隔物变窄。 由开口限定的多晶硅层的一部分注入n型杂质。 在暴露的多晶硅层的上表面上形成硅化物层。 在硅化物层上形成氧化物层。 蚀刻多晶硅层,使得在氧化物层下方形成栅极导体。 随后在栅极导体附近形成LDD区域和源极/漏极区域。