会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of fabrication of striped magnetoresistive (SMR) and dual stripe magnetoresistive (DSMR) heads with anti-parallel exchange configuration
    • 具有反并联交换配置的带状磁阻(SMR)和双条磁阻(DSMR)头的制造方法
    • US06430015B2
    • 2002-08-06
    • US09773743
    • 2001-02-02
    • Kochan JuMao-Min ChenCheng T. HorngJei-Wei Chang
    • Kochan JuMao-Min ChenCheng T. HorngJei-Wei Chang
    • G11B539
    • B82Y25/00B82Y10/00G11B5/3163G11B5/3903G11B5/3932G11B5/3948G11B2005/3996
    • A longitudinally magnetically biased dual stripe magnetoresistive (DSMR) sensor element comprises a first patterned magnetoresistive (MR) layer. There are contacts at the opposite ends of the patterned magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer, each of the stacks including a first Anti-Ferro-Magnetic (AFM) layer and a first lead layer. With the first MR layer in place the device was annealed in the presence of a longitudinal external magnetic field. A second patterned magnetoresistive (MR) layer was formed above the previous structure. There are contacts at the opposite ends of the second patterned magnetoresistive (MR) layer with a second pair of stacks defining a second track width of the second patterned magnetoresistive (MR) layer. Each of the second pair of stacks includes spacer layer is composed of a metal, a Ferro-Magnetic (FM) layer, a second Anti-Ferro-Magnetic (AFM) layer and a second lead layer. With the second MR layer in place, the device was annealed in the presence of a second longitudinal external magnetic field.
    • 纵向磁偏置双条磁阻(DSMR)传感器元件包括第一图案化磁阻(MR)层。 在图案化磁阻(MR)层的相对端处存在触点,第一对叠层限定第一磁阻(MR)层的轨道宽度,第一对堆叠限定第一磁阻(MR)的磁道宽度, 层,每个堆叠包括第一抗铁磁(AFM)层和第一引线层。 在第一MR层就位的情况下,器件在存在纵向外部磁场的情况下退火。 在先前结构之上形成第二图案化磁阻(MR)层。 在第二图案化磁阻(MR)层的相对端具有限定第二图案化磁阻(MR)层的第二磁道宽度的第二对叠层的触点。 第二对堆叠中的每一个包括间隔层由金属,铁磁(FM)层,第二抗铁磁(AFM)层和第二引线层组成。 在第二MR层就位的情况下,器件在第二纵向外部磁场的存在下退火。
    • 3. 发明授权
    • Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient
    • 具有增强磁阻(MR)系数的巨磁阻(GMR)传感器元件
    • US06292336B1
    • 2001-09-18
    • US09408703
    • 1999-09-30
    • Cheng T. HorngRu-Ying TongKochan JuMao-Min ChenJei-Wei ChangSimon H. Liao
    • Cheng T. HorngRu-Ying TongKochan JuMao-Min ChenJei-Wei ChangSimon H. Liao
    • G11B5127
    • B82Y25/00B82Y10/00G01R33/093G11B5/3903G11B5/3967G11B2005/3996H01F10/3268
    • A method for forming a giant magnetoresistive (GMR) sensor element, and a giant magnetoresistive (GMR) sensor element formed in accord with the method. In accord with the method, there is first provided a substrate. There is then formed over the substrate a seed layer formed of a magnetoresistive (MR) resistivity sensitivity enhancing material selected from the group consisting or nickel-chromium alloys and nickel-iron-chromium alloys. There is then formed over the seed layer a nickel oxide material layer. Finally, there is then formed over the nickel oxide material layer a free ferromagnetic layer separated from a pinned ferromagnetic layer in turn formed thereover by a non-magnetic conductor spacer layer, where the pinned ferromagnetic layer in turn has a pinning material layer formed thereover. The method contemplates a giant magnetoresistive (GMR) sensor element formed in accord with the method. The nickel oxide material layer provides the giant magnetoresistive (GMR) sensor element with an enhanced magnetoresistive (MR) resistivity sensitivity.
    • 一种用于形成巨磁阻(GMR)传感器元件的方法,以及根据该方法形成的巨磁阻(GMR)传感元件。 根据该方法,首先提供基板。 然后在衬底上形成由选自镍铬合金和镍 - 铁 - 铬合金的磁阻(MR)电阻率敏感度增强材料形成的晶种层。 然后在种子层上形成氧化镍材料层。 最后,然后在氧化镍材料层上形成与被钉扎的铁磁性层分离的自由铁磁层,然后由非磁性导体间隔层形成,其中钉扎的铁磁层又形成有钉扎材料层。 该方法考虑了根据该方法形成的巨磁阻(GMR)传感器元件。 氧化镍材料层提供具有增强的磁阻(MR)电阻率敏感性的巨磁阻(GMR)传感器元件。
    • 4. 发明授权
    • Method of fabrication of striped magnetoresistive (SMR) and dual stripe magnetoresistive (DSMR) heads with anti-parallel exchange configuration
    • 具有反并联交换配置的带状磁阻(SMR)和双条磁阻(DSMR)头的制造方法
    • US06204071B1
    • 2001-03-20
    • US09408491
    • 1999-09-30
    • Kochan JuMao-Min ChenCheng T. HorngJei-Wei Chang
    • Kochan JuMao-Min ChenCheng T. HorngJei-Wei Chang
    • H01L2100
    • B82Y25/00B82Y10/00G11B5/3163G11B5/3903G11B5/3932G11B5/3948G11B2005/3996
    • A method for forming a longitudinally magnetically biased dual stripe magnetoresistive (DSMR) sensor element comprises forming a first patterned magnetoresistive (MR) layer. Contact the opposite ends of the patterned magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer, each of the stacks including a first Anti-Ferro-Magnetic (AFM) layer and a first lead layer. Then anneal the device in the presence of a longitudinal external magnetic field. Next, form a second patterned magnetoresistive (MR) layer above the previous structure. Contact the opposite ends of the second patterned magnetoresistive (MR) layer with a second pair of stacks defining a second track width of the second patterned magnetoresistive (MR) layer. Each of the second pair of stacks includes spacer layer composed of a metal, a Ferro-Magnetic (FM) layer, a second Anti-Ferro-Magnetic (AFM) layer and a second lead layer. Then anneal the device in the presence of a second longitudinal external magnetic field.
    • 用于形成纵向磁偏置双条磁阻(DSMR)传感器元件的方法包括形成第一图案化磁阻(MR)层。 用限定第一磁阻(MR)层的轨道宽度的第一对叠层接触图案化磁阻(MR)层的相对端,每个堆叠包括第一抗铁磁(AFM)层和第一 铅层。 然后在存在纵向外部磁场的情况下退火该器件。 接下来,在先前的结构之上形成第二图案化磁阻(MR)层。 用限定第二图案化磁阻(MR)层的第二磁道宽度的第二对叠层接触第二图案化磁阻(MR)层的相对端。 第二对堆叠中的每一个包括由金属,铁磁(FM)层,第二抗铁磁(AFM)层和第二引线层组成的间隔层。 然后在存在第二纵向外部磁场的情况下退火该器件。
    • 6. 发明授权
    • Electrochemical method to improve MR reader edge definition and device reliability
    • 电化学方法提高MR读取器边缘定义和器件可靠性
    • US06287476B1
    • 2001-09-11
    • US09332429
    • 1999-06-14
    • Kochan JuShou-Chen KaoCherng-Chyi HanJei-Wei ChangMao-Min Chen
    • Kochan JuShou-Chen KaoCherng-Chyi HanJei-Wei ChangMao-Min Chen
    • G11B5127
    • B82Y25/00B82Y10/00G01R33/09G11B5/3106G11B5/3133G11B5/3903G11B5/40G11B2005/3996
    • A method to form a passivation layer using an electrochemical process over a MR Sensor so that the passivation layer defines the MR track width. The passivation layer is formed by anodizing the MR sensor. The passivation layer is an electrical insulator (preventing Sensor current (I) from shunting through the overspray) and a heat conductor to allow MR heat to dissipate away from the MR sensor through the overspray. The method comprises: forming a passivation layer on the MR sensor; the passivation layer formed using an electrochemical process. Then we spinning-on and printing a lift-off photoresist structure over the passivation layer. The passivation layer is etched to remove the passivation layer not covered by the lift-off structure thereby defining a track width of the MR sensor. Then we deposit a lead layer over the passivation layer and MR sensor. The lift-off structure is removed where by the passivation layer defines a track width. The passivation layer is an electrical insulator that prevents sensor current (I) form shunting through overspray layers while allowing heat to dissipate through to the lead layer.
    • 使用MR传感器上的电化学过程形成钝化层的方法,使得钝化层限定MR磁道宽度。 通过阳极氧化MR传感器形成钝化层。 钝化层是电绝缘体(防止传感器电流(I)通过过喷)分流)和热导体,以允许MR热量通过过喷器散射离开MR传感器。 该方法包括:在MR传感器上形成钝化层; 使用电化学工艺形成钝化层。 然后我们旋转并在钝化层上印刷剥离光致抗蚀剂结构。 蚀刻钝化层以除去未被剥离结构覆盖的钝化层,从而限定MR传感器的轨道宽度。 然后我们在钝化层和MR传感器上沉积铅层。 去除剥离结构,其中钝化层限定轨道宽度。 钝化层是电绝缘体,其防止传感器电流(I)通过过喷层形成分流,同时允许热量散发到引线层。
    • 7. 发明授权
    • GMR configuration with enhanced spin filtering
    • GMR配置与增强的自旋过滤
    • US06770382B1
    • 2004-08-03
    • US09443447
    • 1999-11-22
    • Jei-Wei ChangBernard DienyMao-Min ChenCheng HorngKochan JuSimon Liao
    • Jei-Wei ChangBernard DienyMao-Min ChenCheng HorngKochan JuSimon Liao
    • G11B5127
    • H01F10/30B82Y10/00B82Y25/00G01R33/093G11B5/3133G11B5/3903G11B5/3909H01F10/3272H01L43/08Y10T428/1121Y10T428/1129Y10T428/1157Y10T428/1171Y10T428/12944Y10T428/2495
    • A Spin Valve GMR and Spin Filter SVGMR configuration where in the first embodiment an important buffer layer is composed of an metal oxide having a crystal lattice constant that is close the 1st FM free layer's crystal lattice constant and has the same crystal structure (e.g., FCC, BCC, etc.). The metal oxide buffer layer enhances the specular scattering. The spin valve giant magnetoresistance (SVGMR) sensor comprises: a seed layer over the substrate. An important metal oxide buffer layer (buffer layer) over the seed layer. The metal oxide layer preferably is comprised of NiO or alpha-Fe2O3. A free ferromagnetic layer over the metal oxide layer. A non-magnetic conductor spacer layer over the free ferromagnetic layer. A pinned ferromagnetic layer (2nd FM pinned) over the non-magnetic conductor spacer layer and a pinning material layer over the pinned ferromagnetic layer. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter -SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment is a pinned FM layer comprised of a three layer structure of an lower AP layer, a spacer layer (e.g., Ru) and an upper AP layer.
    • 自旋阀GMR和自旋滤波器SVGMR配置,其中在第一实施例中,重要的缓冲层由具有接近第1个FM自由层的晶格常数的晶格常数的金属氧化物组成并且具有相同的晶体结构 例如FCC,BCC等)。 金属氧化物缓冲层增强了镜面散射。 自旋阀巨磁阻(SVGMR)传感器包括:衬底上的种子层。 种子层上重要的金属氧化物缓冲层(缓冲层)。 金属氧化物层优选由NiO或α-Fe2O3组成。 在金属氧化物层上的自由铁磁层。 在自由铁磁层上的非磁性导体间隔层。 在非磁性导体间隔层上方的钉扎铁磁层(第二个FM被钉住)和钉扎铁磁层上的钉扎材料层。 在第二实施例中,在缓冲层上形成高电导率层(HCL)以产生自旋滤波器-SVGMR。 HCL层增强了旋转过滤器SVGMR的GMR比。 第三实施例是由下AP层,间隔层(例如Ru)和上AP层组成的三层结构的钉扎FM层。
    • 9. 发明授权
    • Chemical approach to develop lift-off photoresist structure and passivate MR sensor
    • 化学方法开发剥离光致抗蚀剂结构和钝化MR传感器
    • US06274025B1
    • 2001-08-14
    • US09332433
    • 1999-06-14
    • Jei-Wei ChangShou-Chen KaoCherng-Chyi HanKochan JuMao-Min Chen
    • Jei-Wei ChangShou-Chen KaoCherng-Chyi HanKochan JuMao-Min Chen
    • C25D502
    • B82Y25/00B82Y10/00G11B5/3106G11B5/3163G11B5/3903G11B2005/3996
    • A method to form a passivation layer over a MR Sensor so that the passivation layer defines the track width. The passivation layer is formed simultaneously with the development of the lift off structure in a novel developing/oxidizing solution that oxidizes the MR sensor and develops the photoresist. The passivation layer is an electrical insulator that prevents sensor current from shunting through the overspray of the leads and a heat conductor to allow MR heat to dissipate through the overspray. The method comprises: spinning-on and printing a lift-off photoresist structure over the MR sensor. Next, the lift-off photoresist structure is developed. The MR sensor is anodized in a developing/oxidizing solution to: (1) remove portions of the lower photoresist and (2) to form a (e.g., thin NiFeO) passivation layer on the MR layer at least partially under the upper photoresist layer. The passivation layer is etched to remove the passivation layer not covered by the lift-off structure. Then, a lead layer is deposited over the passivation layer and MR sensor. The lift-off structure is removed.
    • 在MR传感器上形成钝化层的方法,使得钝化层限定轨道宽度。 钝化层与氧化MR传感器并显影光致抗蚀剂的新型显影/氧化溶液中的剥离结构的发展同时形成。 钝化层是电绝缘体,其防止传感器电流通过引线的过度喷射和热导体分流,以允许MR热量通过过喷器消散。 该方法包括:在MR传感器上旋转并打印剥离光致抗蚀剂结构。 接下来,开发剥离光致抗蚀剂结构。 将MR传感器在显影/氧化溶液中进行阳极氧化,以:(1)去除下部光致抗蚀剂的部分,和(2)在MR层上至少部分地在上部光致抗蚀剂层下形成(例如,薄的NiFeO)钝化层。 钝化层被蚀刻以除去未被剥离结构覆盖的钝化层。 然后,在钝化层和MR传感器上沉积引线层。 剥离结构被去除。