会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Wireless surveillance system
    • 无线监控系统
    • US20070013513A1
    • 2007-01-18
    • US11392376
    • 2006-03-28
    • Kenneth TangLance BreesRichard Chedester
    • Kenneth TangLance BreesRichard Chedester
    • G08B13/00H04N7/18
    • H04N7/181G08B13/19634G08B13/19658G08B13/1966G08B13/19695
    • A surveillance system utilizing existing street lighting equipment. In a preferred embodiment, surveillance units include a small camera and a wireless transceiver and a connector that allows the surveillance units to plug into an existing outdoor light in the place of the outdoor lights' photo cells. In this preferred embodiment communication between the lights and the cellular station is at frequencies of about 2.4 GHz and uses the 802.11b protocol that permits transmission of data at up to 11 million bits per second or the 802.11g protocol that permits transmission of data at up to 54 million bits per second. The cellular stations then communicates with the central monitoring station at a frequency range of 71-76 GHz and 81 to 86 GHz that permits transmission of data at about 1.0 billion bits per second. In an example system, with 1,000 surveillance cameras (each camera unit plugged into the photocell receptacle of a street light), 100 camera units communicate with each of 10 cellular stations and the 10 cellular stations communicate with a single central monitoring station.
    • 利用现有街道照明设备的监控系统。 在优选实施例中,监视单元包括小型照相机和无线收发器以及连接器,其允许监视单元插入现有的室外灯来代替室外灯的光电池。 在这个优选实施例中,光与蜂窝站之间的通信频率约为2.4GHz,并且使用允许每秒高达1100万比特的数据传输的802.11b协议或允许数据在上传的802.11g协议 到5400万比特/秒。 然后,蜂窝站在71-76GHz和81至86GHz的频率范围内与中央监测站通信,允许以每秒约10亿比特的速率传输数据。 在示例系统中,具有1,000个监视摄像机(每个摄像机单元插入路灯的光电池插座),100个摄像机单元与10个蜂窝站中的每个通信,并且10个蜂窝站与单个中央监控站通信。
    • 2. 发明授权
    • Wireless millimeter wave communication system
    • 无线毫米波通信系统
    • US08090411B2
    • 2012-01-03
    • US12004587
    • 2007-12-24
    • Eric KorevaarEduardo TinocoRichard ChedesterVladimar Kolinko
    • Eric KorevaarEduardo TinocoRichard ChedesterVladimar Kolinko
    • H04M1/00
    • H01Q19/062H01Q19/08
    • A lens-based millimeter wave transceiver for use in wireless communication systems operating in the E-band spectrum consistent with the FCC rules regulating the 71-76 GHz and 81-86 GHz bands. The transceiver includes a single lens adapted for transmission of millimeter radiation to form communication beams in one band of either a band of about 71-76 GHz or a band of 81-86 GHz and for collection and focusing of millimeter wave radiation from communication beams in the other of the two bands. It includes a feed horn adapted to broadcast millimeter radiation through said single lens and to collect incoming millimeter wave radiation collected and focused by said single lens. A millimeter wave diplexer separates incoming and outgoing millimeter wave radiation.
    • 一种基于透镜的毫米波收发器,用于在E波段频谱中工作的无线通信系统,符合调节71-76 GHz和81-86 GHz频段的FCC规则。 收发器包括适于传输毫米辐射的单个透镜,以在约71-76GHz的频带或81-86GHz的频带的一个频带中形成通信波束,并且用于从通信波束中收集和聚焦毫米波辐射 两个乐队中的另一个。 它包括适于通过所述单个透镜广播毫米辐射并且收集由所述单个透镜收集和聚焦的传入毫米波辐射的馈电喇叭。 毫米波双工器分离入射和射出的毫米波辐射。
    • 3. 发明申请
    • Mobile millimeter wave communication link
    • 移动毫米波通信链路
    • US20060178142A1
    • 2006-08-10
    • US11249787
    • 2005-10-12
    • John LovbergDavid LillyEric KorevaarRichard Chedester
    • John LovbergDavid LillyEric KorevaarRichard Chedester
    • H04Q7/20
    • H04B1/38H04B7/18504
    • A point-to-point, wireless, millimeter wave communications link between two stations at least one of which is a mobile station. A millimeter wave transmitter system operating at frequencies higher than 57 GHz with a tracking antenna producing a beam having a half-power beam width of about 2 degrees or less and a millimeter wave receiver also with a tracking antenna having a half-power beam width of about 2 degrees or less. In preferred embodiments each mobile station has a global position system (GPS) and a radio transmitter and both tracking antennas are pointed utilizing GPS information from the mobile station or stations. The GPS information preferably is transmitted via a low frequency, low data rate radio. Each millimeter wave unit is capable of transmitting and/or receiving, through the atmosphere, digital information to/from the other station at rates in excess of 155 million bits per second during normal weather conditions. In preferred embodiments actually built and tested by Applicants digital information has been transmitted at rates of 1.25 gigabits per second. Preferred communication links described here are millimeter wave links operating at frequencies of 71-73 GHz and 74-76 GHz mounted on simple two-axis gimbals. Pointing information of the required accuracy is provided by GPS receivers and standard radio links which send the GPS calculated positions to the millimeter wave systems at the opposite end of the link. In these embodiments there is no need for any complicated closed loop pointing information derived from received signal intensity or phase. On moving platforms locally generated inertial attitude information is combined with the GPS positions to control pointing of the gimbaled transceivers.
    • 两个站点之间的点到点,无线,毫米波通信链路,其中至少一个是移动站。 一个在高于57GHz频率工作的毫米波发射机系统,具有产生具有大约2度或更小的半功率波束宽度的波束的跟踪天线以及具有半波束宽度的跟踪天线的毫米波接收机 约2度以下。 在优选实施例中,每个移动站具有全球定位系统(GPS)和无线电发射机,并且利用来自移动站或站的GPS信息来指示两个跟踪天线。 GPS信息优选地经由低频,低数据速率无线电发送。 每个毫米波单元能够在正常天气条件下,以大于每秒155百万比特的速率向大气传送和/或从另一台站发送数字信息。 在由申请人实际构建和测试的优选实施例中,已经以1.25吉比特/秒的速率传送数字信息。 这里描述的优选通信链路是安装在简单的双轴万向台上的以71-73GHz和74-76GHz频率工作的毫米波链路。 所需精度的指向信息由GPS接收机和标准无线电链路提供,GPS接收机和链路的相对端发送GPS计算的位置到毫米波系统。 在这些实施例中,不需要从接收到的信号强度或相位导出的任何复杂的闭环指向信息。 在移动平台上,本地产生的惯性姿态信息与GPS位置相结合,以控制万向收发器的指向。
    • 4. 发明授权
    • High data rate milllimeter wave radio on a chip
    • 高数据速率毫米波无线电在芯片上
    • US09300508B2
    • 2016-03-29
    • US12930947
    • 2011-01-20
    • John A. LovbergRichard Chedester
    • John A. LovbergRichard Chedester
    • H04B1/38H04L27/20H04L27/233
    • H04L27/2039H04L27/2332
    • A millimeter wave radio transceiver having all or substantially all of its components fabricated on a single chip or chipset of a small number of semiconductor chips. The chip or chipsets when mass produced is expected to make the price of millimeter wave radios comparable to many of the lower-priced microwave radios available today from low-cost foreign suppliers. Transceivers of the present invention operate in the range of about 1 Gbps to more than 10 Gbps. The transceiver of a preferred embodiment is designed to receive binary input data at an input data rate in 10.3125 Gbps and to transmit at a transmit data rate in of 10.3125 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at a millimeter wave nominal carrier frequency in excess of 70 GHz.
    • 毫米波无线电收发器具有制造在少量半导体芯片的单个芯片或芯片组上的所有或基本上所有组件。 批量生产时的芯片或芯片组有望使毫米波无线电的价格与当今低成本的国外供应商提供的许多价格较低的微波无线电相当。 本发明的收发机在大约1Gbps到大于10Gbps的范围内工作。 优选实施例的收发器被设计为以10.3125Gbps的输入数据速率接收二进制输入数据,并以10.3125Gbps的发送数据速率利用毫米波标称的毫米波载波上的编码三位数据符号进行发送 载波频率超过70 GHz。
    • 5. 发明申请
    • Millimeter wave communications link
    • US20050271125A1
    • 2005-12-08
    • US10859006
    • 2004-06-02
    • Richard ChedesterJohn LovbergPaul JohnsonEric Korevaar
    • Richard ChedesterJohn LovbergPaul JohnsonEric Korevaar
    • H04B1/38H04B1/40
    • H04B1/40
    • A high data rate free space communication link operating at millimeter wave frequency ranges. Links include two transceivers, the first transceiver transmitting at a first frequency range and receiving at a second frequency range and a second transceiver transmitting at the second frequency range and receiving at the first frequency range. Each of the two transceivers has a primary tunable oscillator providing a basic frequency signal that is precisely the same for both transceivers. Preferably the primary tunable oscillator in one of the transceivers, the slave oscillator, is slaved to the primary tunable oscillator, the master oscillator, in the other transceiver and the two transceivers are locked in frequency and phase. Also preferably the master oscillator is frequency controlled to maintain a constant number of wavelengths in the millimeter wave radio beams between the two transceivers, at least for periods of time permitting substantial data transmission without change in the number of wavelengths. In both transceivers a center frequency is generated by frequency multiplication and mixing of harmonics of the basic frequency signal generated by the transceiver's primary tunable oscillator. Preferred embodiments are designed to operate at frequencies above 60 GHz. In a particular preferred embodiment the center frequency for the first transceiver is about 73.5 GHz and the center frequency for the second transceiver is about 83.3 GHz. Embodiments of the present invention include automatic transmit power control, (preferably about 20 db of it, permitting operation at about 1 percent to 100 percent of maximum transmit power) for assuring adequate signal transmission in a wide variety of atmospheric conditions but not excessive power that might interfere with other links at the same frequencies. The narrow beam widths of these transceivers at about 0.5 degrees using a two-foot diameter antenna and the above transmit power control permit a large number of these transceivers to operate in the same region using the same frequencies.
    • 8. 发明授权
    • Mobile millimeter wave communication link
    • 移动毫米波通信链路
    • US07680516B2
    • 2010-03-16
    • US11249787
    • 2005-10-12
    • John LovbergDavid LillyEric KorevaarRichard Chedester
    • John LovbergDavid LillyEric KorevaarRichard Chedester
    • H04M1/00
    • H04B1/38H04B7/18504
    • A point-to-point, wireless, millimeter wave communications link between two stations at least one of which is a mobile station. A millimeter wave transmitter system operating at frequencies higher than 57 GHz with a tracking antenna producing a beam having a half-power beam width of about 2 degrees or less and a millimeter wave receiver also with a tracking antenna having a half-power beam width of about 2 degrees or less. In preferred embodiments each mobile station has a global position system (GPS) and a radio transmitter and both tracking antennas are pointed utilizing GPS information from the mobile station or stations. The GPS information preferably is transmitted via a low frequency, low data rate radio. Each millimeter wave unit is capable of transmitting and/or receiving, through the atmosphere, digital information to/from the other station at rates in excess of 155 million bits per second during normal weather conditions. In preferred embodiments actually built and tested by Applicants digital information has been transmitted at rates of 1.25 gigabits per second. Preferred communication links described here are millimeter wave links operating at frequencies of 71-73 GHz and 74-76 GHz mounted on simple two-axis gimbals. Pointing information of the required accuracy is provided by GPS receivers and standard radio links which send the GPS calculated positions to the millimeter wave systems at the opposite end of the link. In these embodiments there is no need for any complicated closed loop pointing information derived from received signal intensity or phase. On moving platforms locally generated inertial attitude information is combined with the GPS positions to control pointing of the gimbaled transceivers.
    • 两个站点之间的点到点,无线,毫米波通信链路,其中至少一个是移动站。 一个在高于57GHz频率工作的毫米波发射机系统,具有产生具有大约2度或更小的半功率波束宽度的波束的跟踪天线以及具有半波束宽度的跟踪天线的毫米波接收机 约2度以下。 在优选实施例中,每个移动站具有全球定位系统(GPS)和无线电发射机,并且利用来自移动站或站的GPS信息来指示两个跟踪天线。 GPS信息优选地经由低频,低数据速率无线电发送。 每个毫米波单元能够在正常天气条件下,以大于每秒155百万比特的速率向大气传送和/或从另一台站发送数字信息。 在由申请人实际构建和测试的优选实施例中,已经以1.25吉比特/秒的速率传送数字信息。 这里描述的优选通信链路是安装在简单的双轴万向台上的以71-73GHz和74-76GHz频率工作的毫米波链路。 所需精度的指向信息由GPS接收机和标准无线电链路提供,GPS接收机和链路的相对端发送GPS计算的位置到毫米波系统。 在这些实施例中,不需要从接收到的信号强度或相位导出的任何复杂的闭环指向信息。 在移动平台上,本地产生的惯性姿态信息与GPS位置相结合,以控制万向收发器的指向。
    • 10. 发明申请
    • 10GbE E-band radio with 8PSK modulation
    • 具有8PSK调制功能的10GbE E波段无线电
    • US20160204823A1
    • 2016-07-14
    • US14998988
    • 2016-03-14
    • John LovbergRichard ChedesterVladimir Kolinko
    • John LovbergRichard ChedesterVladimir Kolinko
    • H04B1/40H04W72/04
    • H04B1/40H04L27/2039H04L27/2332H04W72/0453
    • A millimeter wave radio link in which the transceivers have most of its components fabricated on a single chip or chipset of a small number of semiconductor chips. The chip or chipsets when mass produced is expected to make the price of millimeter wave radios comparable to many of the lower-priced microwave radios available today from low-cost foreign suppliers. Preferred embodiments of the present invention operate in the range of about 3.5 Gbps to more than 10 Gbps. The transceivers of a preferred embodiment are designed to receive binary input data at an input data rate in 10.3125 Gbps and to transmit at a transmit data rate in of 10.3125 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at E-Band frequencies.
    • 一种毫米波无线电链路,其中收发器的大部分组件制造在少量半导体芯片的单个芯片或芯片组上。 批量生产时的芯片或芯片组有望使毫米波无线电的价格与当今低成本的国外供应商提供的许多价格较低的微波无线电相当。 本发明的优选实施例在大约3.5Gbps到大于10Gbps的范围内操作。 优选实施例的收发机被设计为以10.3125Gbps的输入数据速率接收二进制输入数据,并以10.3125Gbps的发送数据速率利用在E波段频率上的毫米波载波上的编码的三位数据符号进行发送 。