会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • IDENTIFICATION OF MULTI-MODAL ASSOCIATIONS BETWEEN BIOMEDICAL MARKERS
    • 生物医学标记之间的多模式关联的鉴定
    • WO2012046191A3
    • 2012-06-07
    • PCT/IB2011054366
    • 2011-10-04
    • KONINKL PHILIPS ELECTRONICS NVCOLD SPRING HARBOR LABBANERJEE NILANJANAJANEVSKI ANGELKAMALAKARAN SITHARTHANVARADAN VINAYDIMITROVA NEVENKALUCITO ROBERT
    • BANERJEE NILANJANAJANEVSKI ANGELKAMALAKARAN SITHARTHANVARADAN VINAYDIMITROVA NEVENKALUCITO ROBERT
    • G06F19/12
    • G06F19/20G06F19/12G06F19/18
    • The present invention relates to a method for identifying multi-modal associations between biomedical markers which allows for the determination of network nodes and/or high ranking network members or combinations thereof, indicative of having a diagnostic, prognostic or predictive value for a medical condition, in particular ovarian cancer. The present invention further relates to a biomedical marker or group of biomedical markers associated with a high likelihood of responsiveness of a subject to a cancer therapy, preferably a platinum based cancer therapy, wherein said biomedical marker or group of biomedical markers comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 8, 19, 20 or all markers selected from PKMYT1, SKIL, RAB8A, HIRIP3, CTNNB1, NGFR, ZCCHC11, LSP1, CD200, PAX8, CYBRD1, HOXC11, TCEAL1, FZD10,FZD1, BBS4, IRS2, TLX3, TSPAN2, TXN, and CFLAR. Furthermore, an assay for detecting, diagnosing, graduating, monitoring or prognosticating a medical condition, or for detecting, 1 diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, in particular ovarian cancer, is provided, as well as a corresponding method for classifying a subject comprising and a medical decision support system.
    • 本发明涉及一种用于识别生物医学标记之间的多模式关联的方法,其允许确定网络节点和/或高排名网络成员或其组合,指示具有医疗状况的诊断,预后或预测值, 特别是卵巢癌。 本发明进一步涉及与受试者对癌症疗法的响应性的高度可能性相关联的生物医学标记物或生物医学标记物组,其中所述生物医学标记物或生物医学标记物组包括至少1种, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,8,19,20或所有选自PKMYT1,SKIL,RAB8A,HIRIP3, CTNNB1,NGFR,ZCCHC11,LSP1,CD200,PAX8,CYBRD1,HOXC11,TCEAL1,FZD10,FZD1,BBS4,IRS2,TLX3,TSPAN2,TXN和CFLAR。 此外,提供了用于检测,诊断,分级,监测或预测医疗状况或用于检测,诊断,监测或预测受试者针对所述医疗状况,特别是卵巢癌的疗法的响应性的测定,作为 以及用于分类包括医疗决策支持系统的对象的相应方法。
    • 4. 发明申请
    • METHOD FOR ESTIMATION OF INFORMATION FLOW IN BIOLOGICAL NETWORKS
    • 生物网络信息流估计方法
    • WO2012104764A2
    • 2012-08-09
    • PCT/IB2012050405
    • 2012-01-30
    • KONINKL PHILIPS ELECTRONICS NVVARADAN VINAYMITTAL PRATEEKKAMALAKARAN SITHARTHANDIMITROVA NEVENKAJANEVSKI ANGELBANERJEE NIIANJANA
    • VARADAN VINAYMITTAL PRATEEKKAMALAKARAN SITHARTHANDIMITROVA NEVENKAJANEVSKI ANGELBANERJEE NIIANJANA
    • G06F19/12
    • G06F19/324G06F19/12G06F19/20G06F19/24
    • The present invention relates to a method for stratifying a patient into a clinically relevant group comprising the identification of the probability of an alteration within one or more sets of molecular data from a patient sample in comparison to a database of molecular data of known phenotypes, the inference of the activity of a biological network on the basis of the probabilities, the identification of a network information flow probability for the patient via the probability of interactions in the network, the creation of multiple instances of network information flow for the patient sample and the calculation of the distance of the patient from other subjects in a patient database using multiple instances of the network information flow. The invention further relates to a biomedical marker or group of biomedical markers associated with a high likelihood of responsiveness of a subject to a cancer therapy wherein the biomedical marker or group of biomedical markers comprises altered biological pathway markers, as well as to an assay for detecting, diagnosing, graduating, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, in particular ovarian cancer. Furthermore, a corresponding clinical decision support system is provided.
    • 本发明涉及一种用于将患者分层为临床相关组的方法,其包括鉴定来自患者样品的一组或多组分子数据内的改变概率与已知表型的分子数据的数据库相比较, 基于概率推断生物网络的活动,通过网络中的交互概率识别患者的网络信息流概率,创建患者样本的多个网络信息流实例和 使用网络信息流的多个实例来计算患者与患者数据库中的其他受试者的距离。 本发明进一步涉及生物医学标记物或生物医学标记物组,其与受试者对癌症治疗的响应性的高可能性相关联,其中生物医学标记物或生物医学标记物组包括改变的生物学途径标记物,以及用于检测 ,诊断,毕业,监测或预测医学状况,或用于检测,诊断,监测或预测受试者对于针对所述医学病症,特别是卵巢癌的治疗的反应性。 此外,提供了相应的临床决策支持系统。
    • 10. 发明申请
    • SYSTEM AND METHOD FOR MULTIPLE-FACTOR SELECTION
    • 多因素选择的系统与方法
    • WO2007067956A3
    • 2008-04-03
    • PCT/US2006061749
    • 2006-12-07
    • UNIV COLUMBIAANASTASSIOU DIMITRISVARADAN VINAY
    • ANASTASSIOU DIMITRISVARADAN VINAY
    • G06F17/30C12Q1/68G06F19/00
    • G06F19/24G06F19/20
    • The disclosed subject matter provides techniques for multiple-factor selection. The factors can be features or elements that are jointly associated with one or more outcomes by their joint presence or absence. There may be a non-causative correlation between the factors, features, or elements and the outcomes. In some embodiments, Entropy Minimization and Boolean Parsimony (EMBP) is used to identify modules of genes jointly associated with disease from gene expression data, and a logic function is provided to connect the combined expression levels in each gene module with the presence of disease. The smallest module of genes whose joint expression levels can predict the presence of disease can be identified.
    • 所公开的主题提供了多因素选择的技术。 这些因素可以是通过其联合存在或不存在与一个或多个结果共同相关联的特征或元件。 因素,特征或要素与结果之间可能存在非因果关系。 在一些实施方案中,使用熵最小化和布尔参数(EMBP)来鉴定与基因表达数据共同与疾病相关联的基因的模块,并且提供逻辑功能以将每个基因模块中的组合表达水平与疾病的存在相关联。 可以确定其联合表达水平可以预测疾病存在的最小的基因组。