会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Frame buffer compression and decompression method for graphics rendering
    • 帧缓冲器压缩和解压缩方法用于图形渲染
    • US08031937B2
    • 2011-10-04
    • US11953339
    • 2007-12-10
    • Jim RasmussonTomas Akenine-MöllerJon HasselgrenJacob Munkberg
    • Jim RasmussonTomas Akenine-MöllerJon HasselgrenJacob Munkberg
    • G06K9/00G06T17/00G06K9/36
    • G06T11/40G09G5/363G09G5/393G09G2340/02G09G2340/10H04N19/12H04N19/147H04N19/154H04N19/176H04N19/40H04N19/423
    • Methods and apparatus are disclosed for the processing of frame buffer data, such as color buffer data, in graphics processing applications. Although more generally applicable, these methods and apparatus are particularly useful in real-time, polygon-based, 3D rendering applications. An exemplary method for processing graphics data according to one or more embodiments of the invention begins with the retrieval, from a buffer, of pixel values corresponding to a tile of two or more pixels, and with the updating of one or more of those updated pixel values. The updated pixel values are selectively compressed using a lossy compression operation or a lossless compression operation, based on an accumulated error metric value for the tile. If lossy compression is used, then the accumulated error metric value for the tile is updated; in either event, the compressed pixel values are stored in the frame buffer for further processing. With this approach, the accumulated error caused by successive, or tandem, compression operations may be limited to a pre-determined maximum.
    • 公开了用于在图形处理应用中处理帧缓冲器数据(例如彩色缓冲器数据)的方法和装置。 尽管更普遍适用,但是这些方法和装置在实时,基于多边形的3D渲染应用中特别有用。 根据本发明的一个或多个实施例的用于处理图形数据的示例性方法开始于从缓冲器检索对应于两个或更多个像素的图块的像素值,并且随着更新这些更新像素中的一个或多个 价值观。 基于瓦片的累积误差度量值,使用有损压缩操作或无损压缩操作来选择性地压缩更新的像素值。 如果使用有损压缩,则更新瓦片的累积误差量度值; 在任一情况下,将压缩像素值存储在帧缓冲器中用于进一步处理。 利用这种方法,由连续或串联的压缩操作引起的累积误差可能被限制为预定的最大值。
    • 3. 发明申请
    • Graphics-Processing Architecture Based on Approximate Rendering
    • 基于近似渲染的图形处理架构
    • US20100060629A1
    • 2010-03-11
    • US12207095
    • 2008-09-09
    • Jim RasmussonTomas Akenine-MollerPetrik ClarbergJon HasselgrenJacob Munkberg
    • Jim RasmussonTomas Akenine-MollerPetrik ClarbergJon HasselgrenJacob Munkberg
    • G06T15/00
    • G06T15/005
    • A graphics processing circuit for rendering three-dimensional graphics data is disclosed. The circuit includes pipelined graphics processing stages, wherein each of two or more of the stages is configured to process at least one of graphics primitives, vertices, tiles, and pixels, according to a stage-specific error budget. Depending on its error budget, each of these stages may select a high- or low-precision calculation, select between lossless and lossy compression, adjust the compression ratio of a variable lossy compression algorithm, or some combination of these approaches. The circuit further comprises a global error-control unit configured to determine error budgets for each of the two or more stages, based on at least one of error data received from the two or more stages, predetermined scene complexity data, and user-defined error settings, and to assign the error budgets to the graphics processing stages. Corresponding methods for processing graphics data are also disclosed.
    • 公开了一种用于渲染三维图形数据的图形处理电路。 电路包括流水线图形处理阶段,其中两个或多个阶段中的每一个被配置为根据阶段特定的错误预算来处理图形基元,顶点,瓦片和像素中的至少一个。 根据其错误预算,这些阶段中的每一个可以选择高精度或低精度的计算,在无损压缩和有损压缩之间进行选择,调整可变有损压缩算法的压缩比,或这些方法的某种组合。 该电路还包括全局误差控制单元,其被配置为基于从两个或多个阶段接收到的错误数据,预定场景复杂性数据和用户定义的误差中的至少一个来确定两个或更多个阶段中的每一个的错误预算 设置,并将错误预算分配给图形处理阶段。 还公开了处理图形数据的相应方法。
    • 4. 发明申请
    • Unified Compression/Decompression Graphics Architecture
    • 统一压缩/解压缩图形架构
    • US20090160857A1
    • 2009-06-25
    • US12127462
    • 2008-05-27
    • Jim RasmussonTomas Akenine-MollerPetrik ClarbergJon HasselgrenJacob Munkberg
    • Jim RasmussonTomas Akenine-MollerPetrik ClarbergJon HasselgrenJacob Munkberg
    • G06T15/50
    • G06T11/001G06T1/60G06T9/00G06T15/04G06T2210/08
    • A unified compression/decompression architecture is disclosed for reducing memory bandwidth requirements in 3D graphics processing applications. The techniques described erase several distinctions between a texture (compressed once, and decompressed many times), and buffers (compressed and decompressed repeatedly during rendering of an image). An exemplary method for processing graphics data according to one or more embodiments of the invention thus begins with the updating of one or more tiles of a first image array, which are then compressed, using a real-time buffer compression algorithm, to obtain compressed image array tiles. The compressed image array tiles are stored for subsequent use as a texture. During real-time rendering of a second image array, the compressed image array tiles are retrieved and decompressed using a decompression algorithm corresponding to the buffer compression algorithm. The decompressed image array tiles are then applied as a texture to one or more primitives in the second image array.
    • 公开了一种用于减少3D图形处理应用中的存储器带宽要求的统一的压缩/解压缩架构。 描述的技术擦除纹理(压缩一次,解压缩多次)和缓冲区(在渲染图像期间重复压缩和解压缩)之间的几个区别。 因此,根据本发明的一个或多个实施例的用于处理图形数据的示例性方法开始于使用实时缓冲器压缩算法更新第一图像阵列的一个或多个瓦片,然后将其压缩以获得压缩图像 阵列瓦片。 压缩的图像阵列瓦片被存储以供随后用作纹理。 在第二图像阵列的实时渲染期间,使用与缓冲器压缩算法相对应的解压缩算法来检索和解压缩压缩图像阵列瓦片。 然后将解压缩的图像阵列瓦片作为纹理应用于第二图像阵列中的一个或多个基元。
    • 5. 发明申请
    • Frame Buffer Compression and Decompression Method for Graphics Rendering
    • 用于图形渲染的帧缓冲区压缩和解压缩方法
    • US20080247641A1
    • 2008-10-09
    • US11953339
    • 2007-12-10
    • Jim RasmussonTomas Akenine-MollerJon HasselgrenJacob Munkberg
    • Jim RasmussonTomas Akenine-MollerJon HasselgrenJacob Munkberg
    • G06K9/00
    • G06T11/40G09G5/363G09G5/393G09G2340/02G09G2340/10H04N19/12H04N19/147H04N19/154H04N19/176H04N19/40H04N19/423
    • Methods and apparatus are disclosed for the processing of frame buffer data, such as color buffer data, in graphics processing applications. Although more generally applicable, these methods and apparatus are particularly useful in real-time, polygon-based, 3D rendering applications. An exemplary method for processing graphics data according to one or more embodiments of the invention begins with the retrieval, from a buffer, of pixel values corresponding to a tile of two or more pixels, and with the updating of one or more of those updated pixel values. The updated pixel values are selectively compressed using a lossy compression operation or a lossless compression operation, based on an accumulated error metric value for the tile. If lossy compression is used, then the accumulated error metric value for the tile is updated; in either event, the compressed pixel values are stored in the frame buffer for further processing. With this approach, the accumulated error caused by successive, or tandem, compression operations may be limited to a pre-determined maximum.
    • 公开了用于在图形处理应用中处理帧缓冲器数据(例如彩色缓冲器数据)的方法和装置。 尽管更普遍适用,但是这些方法和装置在实时,基于多边形的3D渲染应用中特别有用。 根据本发明的一个或多个实施例的用于处理图形数据的示例性方法开始于从缓冲器检索对应于两个或更多个像素的图块的像素值,并且随着更新这些更新像素中的一个或多个 价值观。 基于瓦片的累积误差度量值,使用有损压缩操作或无损压缩操作来选择性地压缩更新的像素值。 如果使用有损压缩,则更新瓦片的累积误差量度值; 在任一情况下,将压缩像素值存储在帧缓冲器中用于进一步处理。 利用这种方法,由连续或串联的压缩操作引起的累积误差可能被限制为预定的最大值。
    • 7. 发明授权
    • Prediction-based image processing
    • 基于预测的图像处理
    • US08107753B2
    • 2012-01-31
    • US12863727
    • 2009-01-19
    • Jim RasmussonTomas Akenine-MöllerJacob Ström
    • Jim RasmussonTomas Akenine-MöllerJacob Ström
    • G06K9/36
    • G06T9/00H04N19/11H04N19/14H04N19/176H04N19/426H04N19/46H04N19/593H04N19/90H04N19/96
    • A pixel block (300) is compressed by sub-sampling at least a portion of the pixels (310) into subblocks (320, 330). Predictions are determined for the property values of these subblocks (320, 330) by calculating a variance measure based on property values of neighboring pixels (310)/subblocks (320, 330) in two prediction directions in the block (300) relative to a current subblock (320, 330). If the variance is below a threshold, the prediction is calculated based on neighboring property values in both directions. If the measure exceeds the threshold, the neighboring property values in only one of the two predictions directions are used for calculating the prediction. A guiding bit (450) descriptive of the selected direction is also provided. A prediction error is calculated based on the property value and the calculated prediction. The compressed block (400) comprises an encoded representation (460) of the prediction error and any guiding bit (470).
    • 通过对像素(310)的至少一部分进行子采样(320,330)来对像素块(300)进行压缩。 通过基于块(300)中的两个预测方向上的相邻像素(310)/子块(320,330)的属性值相对于一个块(320,330)计算方差度量,来确定这些子块(320,330)的属性值的预测 当前子块(320,330)。 如果方差低于阈值,则基于两个方向上的相邻属性值来计算预测。 如果测量超过阈值,则仅使用两个预测方向中的一个的相邻属性值来计算预测。 还提供了描述所选方向的引导位(450)。 基于属性值和计算出的预测计算预测误差。 压缩块(400)包括预测误差的编码表示(460)和任何引导位(470)。
    • 10. 发明申请
    • TEXTURE COMPRESSION AND DECOMPRESSION
    • 纹理压缩和分解
    • US20130033513A1
    • 2013-02-07
    • US13640203
    • 2011-02-09
    • Jim RasmussonMichael DoggettJacob StrömPer Wennersten
    • Jim RasmussonMichael DoggettJacob StrömPer Wennersten
    • G06T11/40
    • G06T9/00
    • Embodiments relate to compression and decompression of textures. A texel block (10) is compressed by specifying two major directions in the texel block (10) and defining the profiles of how the texel values change along the respective directions. The resulting compressed texel block (30) comprises two value codewords (31, 32), two line codewords (35-38) and a function codeword (33, 34). The two value codewords (31, 32) are employed to calculate two texel values for the texel block (10). The line codewords (35-38) are employed to determine equations of two lines (20, 22) coinciding with the two major directions in the texel block (10). Signed distances are calculated for each texel (12) from the texel position in the texel block (10) and to the two lines (20, 22). The signed distances are input to a function defined by the function codeword (33, 34) to output two values from which weights are calculated and applied to the two texel values in order to get a representation of the texel value of a texel (12).
    • 实施例涉及纹理的压缩和解压缩。 通过在纹素块(10)中指定两个主要方向来压缩纹理块(10),并且定义纹理值沿着各个方向如何变化的轮廓。 所得到的压缩纹理块(30)包括两个值码字(31,32),两行码字(35-38)和一个功能码字(33,34)。 两个值码字(31,32)用于计算纹素块(10)的两个纹素值。 行码字(35-38)用于确定与纹理块(10)中的两个主要方向一致的两条线(20,22)的等式。 从纹理块(10)中的纹素位置和两条线(20,22)中的每个纹理像素(12)计算签名距离。 有符号距离被输入到由功能代码字(33,34)定义的函数,以输出计算权重的两个值并将其应用于两个纹素值,以便获得纹素的纹理值的表示(12) 。