会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Process for producing a semiconductor device
    • 半导体装置的制造方法
    • US06790741B1
    • 2004-09-14
    • US09694919
    • 2000-10-24
    • Toru Tatsumi
    • Toru Tatsumi
    • H01L218242
    • H01L21/02197H01L21/02271H01L21/02304H01L21/02356H01L21/31691H01L28/56
    • In forming a metal oxide dielectric film of perovskite type for capacitor, an array of lower electrodes and a crystallization-assisting conductive film are simultaneously formed. The crystallization-assisting conductive film is formed outside the lower electrode array, at a distance of about 10 &mgr;m or less from the outermost lower electrodes, in a width of 20 &mgr;m or more. Then, a metal oxide dielectric film is formed thereon. Since the crystallization-assisting conductive film assists the crystallization of metal oxide dielectric film, capacitor elements which are superior in properties and reliability even when the capacitor elements are produced in a fine structure is obtained.
    • 在形成用于电容器的钙钛矿型金属氧化物电介质膜时,同时形成下电极阵列和结晶化辅助导电膜。 结晶化导电膜形成在下电极阵列的外侧,距离最外的下电极约10微米或更小,宽度为20微米或更大。 然后,在其上形成金属氧化物电介质膜。 由于结晶化导电膜有助于金属氧化物电介质膜的结晶化,因此获得即使电容器元件以精细的结构制造也具有优异的性能和可靠性的电容器元件。
    • 8. 发明授权
    • Monocrystalline semiconductor photodetector
    • 单晶半导体光电探测器
    • US06075253A
    • 2000-06-13
    • US60256
    • 1998-04-15
    • Mitsuhiro SugiyamaToru Tatsumi
    • Mitsuhiro SugiyamaToru Tatsumi
    • H01L31/10H01L31/028H01L31/0352H01L29/06
    • H01L31/028H01L31/035281Y02E10/547
    • A semiconductor photodetector having a planar structure, including a first silicon layer having a first conductivity and formed with a recess, a silicon dioxide film covering a sidewall of the recess therewith, a germanium monocrystal layer formed in the recess, a first germanium layer having a first conductivity and sandwiched between the germanium monocrystal layer and the first silicon layer in the recess, a second germanium layer having a second conductivity and formed on the germanium monocrystal layer, and a second silicon layer having a second conductivity and formed on the second germanium layer. The first and second germanium layers prevent a depletion layer, which are generated in the germanium monocrystal layer when a voltage is applied to the semiconductor photodetector, from reaching the first and second silicon layers, respectively. In accordance with the semiconductor photodetector, a depletion layer generated in the germanium monocrystal layer is prevented from reaching the first and second silicon layers, and hence, electric charges generated by introduction of light into the germanium monocrystal layer would not be recombined to each other through a recombination core. As a result, it is possible to avoid reduction in a photoelectric current or a quantum efficiency.
    • 一种具有平面结构的半导体光电检测器,包括具有第一导电性的第一硅层和形成有凹部的半导体光电检测器,覆盖其凹部的侧壁的二氧化硅膜,形成在凹部中的锗单晶层,具有第一锗层的第一锗层, 第一导电性并夹在凹槽内的锗单晶层和第一硅层之间,形成在锗单晶层上的具有第二导电性的第二锗层和形成在第二锗层上的具有第二导电性的第二硅层 。 第一和第二锗层防止当向半导体光电检测器施加电压时在锗单晶层中产生的耗尽层分别达到第一和第二硅层。 根据半导体光电探测器,防止在锗单晶层中产生的耗尽层到达第一和第二硅层,因此通过将锗引入锗单晶层而产生的电荷将不会通过 重组核心。 结果,可以避免光电流或量子效率的降低。
    • 10. 发明授权
    • Thin film deposition method for wafer
    • 晶圆薄膜沉积方法
    • US5441012A
    • 1995-08-15
    • US186502
    • 1994-01-26
    • Ken-ichi AketagawaJunro SakaiToru Tatsumi
    • Ken-ichi AketagawaJunro SakaiToru Tatsumi
    • C30B25/02C30B25/18H01L21/20C30B25/14
    • C30B29/06C30B25/18H01L21/02381H01L21/02395H01L21/02532H01L21/0262H01L21/02639
    • A thin film deposition method consists of placing a wafer or substrate whose surface contains at least two kinds of materials inside a vacuum chamber or vessel, supplying a reactant gas into the vacuum chamber or vessel, the reactant gas containing molecules having a low sticking coefficient relative to at least one of the at least two kinds of materials, and allowing an epitaxial growth to occur on the other kinds of materials contained in the wafer or substrate.The method further includes setting the pressure inside the vacuum chamber or vessel filled with the reactant gas equal to a pressure range in which the mean free path (d) of the reactant gas molecules is longer than the shortest distance (L) between the wafer or substrate placed inside the vacuum chamber or vessel and the vacuum side-exposed wall of the vacuum chamber or vessel, i.e., d>L.The method further includes slopping the introduction of the reactant gas into the vacuum chamber or vessel until the total amount of the reactant gas introduced into the vacuum chamber or vessel reaches its level at which a thin film can be created onto the surface containing the kind of material having the low sticking coefficient relative to the reactant gas, or more specifically, stopping the introduction of the reactant gas until the total amount of the reactant gas molecules striking against the wafer or substrate reaches its level at which a thin film can be created onto the surface containing the kind of material having the low sticking coefficient.
    • 薄膜沉积方法包括将表面含有至少两种材料的晶片或基板放置在真空室或容器内,将反应气体供应到真空室或容器中,含有低粘滞系数的分子的反应气体相对 涉及至少两种材料中的至少一种,并且允许在包含在晶片或基板中的其它种类的材料上发生外延生长。 该方法还包括将填充有反应气体的真空室或容器内的压力设定为等于反应气体分子的平均自由程(d)长于晶片或 放置在真空室或容器内以及真空室或容器的真空侧面暴露壁内,即d> L。 该方法还包括将反应气体引入真空室或容器中,直到引入真空室或容器中的反应气体的总量达到其上可以产生薄膜的水平,该薄膜可以形成在含有 或者更具体地说,停止反应气体的引入,直到反应物气体分子撞击晶片或基板的总量达到其上可以形成薄膜的水平, 该表面含有具有低粘附系数的那种材料。