会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for neutralizing an ion beam using water vapor
    • 使用水蒸汽中和离子束的系统和方法
    • US5814819A
    • 1998-09-29
    • US891688
    • 1997-07-11
    • Frank SinclairVictor BenvenisteJiong Chen
    • Frank SinclairVictor BenvenisteJiong Chen
    • H01J37/317C23C14/48G21K1/14H01J37/02H01J27/02
    • H01J37/026H01J2237/31701
    • An improved ion beam neutralizer (22) is provided for neutralizing the electrical charge of an ion beam (28) output from an extraction aperture (50). The neutralizer comprises a source of water (52); a vaporizer (54) connected to the source of water; a mass flow controller (56) connected to the vaporizer; and an inlet (60) connected to the mass flow controller. The vaporizer (54) converts water from the source (52) from a liquid state to a vapor state. The mass flow controller (56) receives water vapor from the vaporizer (54) and meters the volume of water vapor output by a mass flow controller outlet (66). The inlet (60) is provided with an injection port (68) located proximate the ion beam extraction aperture (50) and receives the metered volume from the outlet (66). The injection port (68) is positioned near the extraction aperture so that the ion beam and the water vapor interact to neutralize the ion beam. The improved ion beam neutralizer (22) is especially effective in low energy (less than ten kilo-electron volts (10 KeV)) beam applications.
    • 提供改进的离子束中和器(22),用于中和从提取孔(50)输出的离子束(28)的电荷。 中和器包括水源(52); 连接到水源的蒸发器(54); 连接到蒸发器的质量流量控制器(56) 以及连接到质量流量控制器的入口(60)。 蒸发器(54)将来自源(52)的水从液态转换为蒸汽状态。 质量流量控制器(56)接收来自蒸发器(54)的水蒸汽并且测量由质量流量控制器出口(66)输出的水蒸汽的体积。 入口(60)设置有靠近离子束提取孔(50)定位并从出口(66)接收计量体积的注射口(68)。 注入口(68)位于提取孔附近,使得离子束和水蒸气相互作用以中和离子束。 改进的离子束中和器(22)在低能量(小于十千伏电压(10KeV)))的应用中特别有效。
    • 2. 发明授权
    • Temperature controlled ion source
    • 温度控制离子源
    • US08188448B2
    • 2012-05-29
    • US12754381
    • 2010-04-05
    • Victor BenvenisteBon-Woong KooShardul PatelFrank Sinclair
    • Victor BenvenisteBon-Woong KooShardul PatelFrank Sinclair
    • G21K5/10
    • H01J37/3171H01J37/08H01J2237/002
    • An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
    • 提供了一种离子源,其利用提供给腔室的相同掺杂剂气体来产生所需的工艺等离子体,以在高通量操作期间提供室壁的温度控制。 离子源包括具有限定内表面的壁的室。 衬套设置在腔室内并且具有至少一个孔口以将掺杂剂气体供应到腔室的内部。 在室壁的内表面的至少一部分和衬垫之间限定间隙。 第一管道被配置为向掺杂剂气体在间隙内具有流速的间隙提供掺杂剂气体。 第二导管构造成从间隙去除掺杂剂气体,其中间隙内的掺杂剂气体的流速用作传热介质以调节室内部的温度。
    • 4. 发明授权
    • System and method for controlling deflection of a charged particle beam within a graded electrostatic lens
    • 用于控制渐变静电透镜内的带电粒子束的偏转的系统和方法
    • US08129695B2
    • 2012-03-06
    • US12647950
    • 2009-12-28
    • Peter L. KellermanFrank SinclairVictor BenvenisteJun Lu
    • Peter L. KellermanFrank SinclairVictor BenvenisteJun Lu
    • G21K1/06
    • H01J37/3171H01J37/1477H01J2237/053H01J2237/12H01J2237/24514
    • A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF. In another embodiment, this is done by fine tuning beam deflection while measuring the beam position and angle at the wafer plane. In a further embodiment, this is done by tuning a deflection factor to achieve a centered beam at the wafer plane.
    • 公开了一种用于控制离子束的偏转,减速和聚焦的方法和装置。 该装置可以包括梯度偏转/减速透镜,其包括设置在离子束的相对侧上的多个上下电极,以及用于调节施加到电极的电压的控制系统。 使用一组“虚拟旋钮”来改变上下电极对之间的电位差,可以独立地控制离子束的偏转和减速。 虚拟旋钮包括对束聚焦和剩余能量污染的控制,上游电子抑制的控制,光束偏转的控制以及光束的最终偏转角的微调,同时约束光束在透镜出射处的位置。 在一个实施例中,这是通过微调光束偏转来实现的,同时约束在VEEF的出口处的光束位置。 在另一个实施例中,这是通过在测量晶片平面处的光束位置和角度时微调光束偏转来完成的。 在另一个实施例中,这通过调整偏转因子来实现在晶圆平面处的中心束。
    • 6. 发明申请
    • SYSTEM AND METHOD FOR CONTROLLING DEFLECTION OF A CHARGED PARTICLE BEAM WITHIN A GRADED ELECTROSTATIC LENS
    • 控制抛光静电镜中带电粒子束的偏移的系统和方法
    • US20110155921A1
    • 2011-06-30
    • US12647950
    • 2009-12-28
    • Peter L. KellermanFrank SinclairVictor BenvenisteJun Lu
    • Peter L. KellermanFrank SinclairVictor BenvenisteJun Lu
    • G21K1/06H01J3/14
    • H01J37/3171H01J37/1477H01J2237/053H01J2237/12H01J2237/24514
    • A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF. In another embodiment, this is done by fine tuning beam deflection while measuring the beam position and angle at the wafer plane. In a further embodiment, this is done by tuning a deflection factor to achieve a centered beam at the wafer plane.
    • 公开了一种用于控制离子束的偏转,减速和聚焦的方法和装置。 该装置可以包括梯度偏转/减速透镜,其包括设置在离子束的相对侧上的多个上下电极,以及用于调节施加到电极的电压的控制系统。 使用一组“虚拟旋钮”来改变上下电极对之间的电位差,可以独立地控制离子束的偏转和减速。 虚拟旋钮包括对束聚焦和剩余能量污染的控制,上游电子抑制的控制,光束偏转的控制以及光束的最终偏转角的微调,同时约束光束在透镜出射处的位置。 在一个实施例中,这是通过微调光束偏转来实现的,同时约束在VEEF的出口处的光束位置。 在另一个实施例中,这是通过在测量晶片平面处的光束位置和角度时微调光束偏转来完成的。 在另一个实施例中,这通过调整偏转因子来实现在晶圆平面处的中心束。