会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • High performance CMOS device structure with mid-gap metal gate
    • 高性能CMOS器件结构,具有中间间隙金属栅极
    • US06762469B2
    • 2004-07-13
    • US10127196
    • 2002-04-19
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • H01L2976
    • H01L21/823807H01L21/823828
    • High performance (surface channel) CMOS devices with a mid-gap work function metal gate are disclosed wherein an epitaxial layer is used for a threshold voltage Vt adjust/decrease for the PFET area, for large Vt reductions (˜500 mV), as are required by CMOS devices with a mid-gap metal gate. The present invention provides counter doping using an in situ B doped epitaxial layer or a B and C co-doped epitaxial layer, wherein the C co-doping provides an additional degree of freedom to reduce the diffusion of B (also during subsequent activation thermal cycles) to maintain a shallow B profile, which is critical to provide a surface channel CMOS device with a mid-gap metal gate while maintaining good short channel effects. The B diffusion profiles are satisfactorily shallow, sharp and have a high B concentration for devices with mid-gap metal gates, to provide and maintain a thin, highly doped B layer under the gate oxide.
    • 公开了具有中间间隙功函数金属栅极的高性能(表面沟道)CMOS器件,其中外延层用于PFET区域的阈值电压Vt调整/减小,用于大的Vt降低(〜500mV),如 需要具有中间间隙金属栅极的CMOS器件。 本发明提供了使用原位B掺杂外延层或B和C共掺杂外延层的反掺杂,其中C共掺杂提供了额外的自由度以减少B的扩散(也在随后的激活热循环期间) )以保持浅的B剖面,这对于提供具有中间间隙金属栅极的表面沟道CMOS器件而言是至关重要的,同时保持良好的短沟道效应。 对于具有中间间隙金属栅极的器件,B扩散曲线令人满意地浅,尖锐且具有高B浓度,以在栅极氧化物下提供并保持薄的高掺杂B层。
    • 3. 发明授权
    • High performance CMOS device structure with mid-gap metal gate
    • 高性能CMOS器件结构,具有中间间隙金属栅极
    • US06916698B2
    • 2005-07-12
    • US10795672
    • 2004-03-08
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • H01L29/423H01L21/8238H01L27/092H01L29/49
    • H01L21/823807H01L21/823828
    • High performance (surface channel) CMOS devices with a mid-gap work function metal gate are disclosed wherein an epitaxial layer is used for a threshold voltage Vt adjust/decrease for the PFET area, for large Vt reductions (˜500 mV), as are required by CMOS devices with a mid-gap metal gate. The present invention provides counter doping using an in situ B doped epitaxial layer or a B and C co-doped epitaxial layer, wherein the C co-doping provides an additional degree of freedom to reduce the diffusion of B (also during subsequent activation thermal cycles) to maintain a shallow B profile, which is critical to provide a surface channel CMOS device with a mid-gap metal gate while maintaining good short channel effects. The B diffusion profiles are satisfactorily shallow, sharp and have a high B concentration for devices with mid-gap metal gates, to provide and maintain a thin, highly doped B layer under the gate oxide.
    • 公开了具有中间间隙功函数金属栅极的高性能(表面沟道)CMOS器件,其中外延层用于PFET区域的阈值电压Vt调整/减小,用于大的Vt降低(〜500mV),如 需要具有中间间隙金属栅极的CMOS器件。 本发明提供了使用原位B掺杂外延层或B和C共掺杂外延层的反掺杂,其中C共掺杂提供了额外的自由度以减少B的扩散(也在随后的激活热循环期间) )以保持浅的B剖面,这对于提供具有中间间隙金属栅极的表面沟道CMOS器件而言是至关重要的,同时保持良好的短沟道效应。 对于具有中间间隙金属栅极的器件,B扩散曲线令人满意地浅,尖锐且具有高B浓度,以在栅极氧化物下提供并保持薄的高掺杂B层。
    • 4. 发明授权
    • Ultra-thin Si MOSFET device structure and method of manufacture
    • 超薄Si MOSFET器件结构及制造方法
    • US07247569B2
    • 2007-07-24
    • US10725848
    • 2003-12-02
    • Diane C. BoydBruce B. DorisMeikei IeongDevendra K. Sadana
    • Diane C. BoydBruce B. DorisMeikei IeongDevendra K. Sadana
    • H01L21/302
    • H01L21/28194H01L21/26533H01L21/28202H01L29/1083H01L29/49H01L29/517H01L29/518H01L29/66545H01L29/78
    • The present invention comprises a method for forming an ultra-thin channel MOSFET and the ultra-thin channel MOSFET produced therefrom. Specifically, the method comprises providing an SOI substrate having a buried insulating layer underlying an SOI layer; forming a pad stack atop the SOI layer; forming a block mask having a channel via atop the pad stack; providing a localized oxide region in the SOI layer on top of the buried insulating layer thereby thinning a portion of the SOI layer, the localized oxide region being self-aligned with the channel via; forming a gate in the channel via; removing at least the block mask; and forming source/drain extensions in the SOI layer abutting the thinned portion of the SOI layer. Providing the localized oxide region further comprises implanting oxygen dopant through the channel via into a portion of the SOI layer; and annealing the dopant to create the localized oxide region.
    • 本发明包括用于形成超薄沟道MOSFET的方法和由其制造的超薄沟道MOSFET。 具体地说,该方法包括:在SOI层的下方提供具有掩埋绝缘层的SOI衬底; 在SOI层顶上形成焊盘堆叠; 通过所述垫堆叠的顶部形成具有通道的块掩模; 在所述掩埋绝缘层的顶部上的所述SOI层中提供局部氧化物区域,从而使所述SOI层的一部分变薄,所述局部氧化物区域与所述沟道通孔自对准; 在通道通道中形成一个门; 至少去除阻挡掩模; 以及在与SOI层的薄化部分邻接的SOI层中形成源极/漏极延伸部。 提供局部氧化物区域还包括通过沟道通孔将氧掺杂剂注入到SOI层的一部分中; 并退火掺杂剂以产生局部氧化物区域。
    • 9. 发明授权
    • Anisotropic nitride etch process with high selectivity to oxide and photoresist layers in a damascene etch scheme
    • 各向异性氮化物蚀刻工艺,在镶嵌蚀刻方案中对氧化物和光致抗蚀剂层具有高选择性
    • US06461529B1
    • 2002-10-08
    • US09299137
    • 1999-04-26
    • Diane C. BoydStuart M. BurnsHussein I. HanafiWaldemar W. KoconWilliam C. WilleRichard Wise
    • Diane C. BoydStuart M. BurnsHussein I. HanafiWaldemar W. KoconWilliam C. WilleRichard Wise
    • H01L213215
    • H01L29/66583H01L21/31116H01L21/76224H01L21/823481
    • A process and etchant gas composition for anisotropically etching a trench in a silicon nitride layer of a multilayer structure. The etchant gas composition has an etchant gas including a polymerizing agent, a hydrogen source, an oxidant, and a noble gas diluent. The oxidant preferably includes a carbon-containing oxidant component and an oxidant-noble gas component. The fluorocarbon gas is selected from CF4, C2F6, and C3F8; the hydrogen source is selected from CHF3, CH2F2, CH3F, and H2; the oxidant is selected from CO, CO2, and O2; and the noble gas diluent is selected from He, Ar, and Ne. The constituents are added in amounts to achieve an etchant gas having a high nitride selectivity to silicon oxide and photoresist. A power source, such as an RF power source, is applied to the structure to control the directionality of the high density plasma formed by exciting the etchant gas. The power source that controls the directionality of the plasma is decoupled from the power source used to excite the etchant gas. The etchant gas can be used during a nitride etch step in a process for making a metal oxide semiconductor field effect transistor.
    • 一种用于各向异性蚀刻多层结构的氮化硅层中的沟槽的工艺和蚀刻剂气体组合物。 蚀刻剂气体组合物具有包括聚合剂,氢源,氧化剂和惰性气体稀释剂的蚀刻剂气体。 氧化剂优选包括含碳氧化剂组分和氧化剂 - 惰性气体组分。 碳氟化合物气体选自CF4,C2F6和C3F8; 氢源选自CHF 3,CH 2 F 2,CH 3 F和H 2; 氧化剂选自CO,CO 2和O 2; 惰性气体稀释剂选自He,Ar和Ne。 添加成分以达到对氧化硅和光致抗蚀剂具有高氮化物选择性的蚀刻剂气体。 将诸如RF电源的电源施加到结构以控制通过激发蚀刻剂气体形成的高密度等离子体的方向性。 控制等离子体方向性的电源与用于激发蚀刻剂气体的电源脱耦。 在制造金属氧化物半导体场效应晶体管的工艺中的氮化物蚀刻步骤期间可以使用蚀刻剂气体。