会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • High performance CMOS device structure with mid-gap metal gate
    • 高性能CMOS器件结构,具有中间间隙金属栅极
    • US06916698B2
    • 2005-07-12
    • US10795672
    • 2004-03-08
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • H01L29/423H01L21/8238H01L27/092H01L29/49
    • H01L21/823807H01L21/823828
    • High performance (surface channel) CMOS devices with a mid-gap work function metal gate are disclosed wherein an epitaxial layer is used for a threshold voltage Vt adjust/decrease for the PFET area, for large Vt reductions (˜500 mV), as are required by CMOS devices with a mid-gap metal gate. The present invention provides counter doping using an in situ B doped epitaxial layer or a B and C co-doped epitaxial layer, wherein the C co-doping provides an additional degree of freedom to reduce the diffusion of B (also during subsequent activation thermal cycles) to maintain a shallow B profile, which is critical to provide a surface channel CMOS device with a mid-gap metal gate while maintaining good short channel effects. The B diffusion profiles are satisfactorily shallow, sharp and have a high B concentration for devices with mid-gap metal gates, to provide and maintain a thin, highly doped B layer under the gate oxide.
    • 公开了具有中间间隙功函数金属栅极的高性能(表面沟道)CMOS器件,其中外延层用于PFET区域的阈值电压Vt调整/减小,用于大的Vt降低(〜500mV),如 需要具有中间间隙金属栅极的CMOS器件。 本发明提供了使用原位B掺杂外延层或B和C共掺杂外延层的反掺杂,其中C共掺杂提供了额外的自由度以减少B的扩散(也在随后的激活热循环期间) )以保持浅的B剖面,这对于提供具有中间间隙金属栅极的表面沟道CMOS器件而言是至关重要的,同时保持良好的短沟道效应。 对于具有中间间隙金属栅极的器件,B扩散曲线令人满意地浅,尖锐且具有高B浓度,以在栅极氧化物下提供并保持薄的高掺杂B层。
    • 2. 发明授权
    • High performance CMOS device structure with mid-gap metal gate
    • 高性能CMOS器件结构,具有中间间隙金属栅极
    • US06762469B2
    • 2004-07-13
    • US10127196
    • 2002-04-19
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • Anda C. MocutaMeikei IeongRicky S. AmosDiane C. BoydDan M. MocutaHuajie Chen
    • H01L2976
    • H01L21/823807H01L21/823828
    • High performance (surface channel) CMOS devices with a mid-gap work function metal gate are disclosed wherein an epitaxial layer is used for a threshold voltage Vt adjust/decrease for the PFET area, for large Vt reductions (˜500 mV), as are required by CMOS devices with a mid-gap metal gate. The present invention provides counter doping using an in situ B doped epitaxial layer or a B and C co-doped epitaxial layer, wherein the C co-doping provides an additional degree of freedom to reduce the diffusion of B (also during subsequent activation thermal cycles) to maintain a shallow B profile, which is critical to provide a surface channel CMOS device with a mid-gap metal gate while maintaining good short channel effects. The B diffusion profiles are satisfactorily shallow, sharp and have a high B concentration for devices with mid-gap metal gates, to provide and maintain a thin, highly doped B layer under the gate oxide.
    • 公开了具有中间间隙功函数金属栅极的高性能(表面沟道)CMOS器件,其中外延层用于PFET区域的阈值电压Vt调整/减小,用于大的Vt降低(〜500mV),如 需要具有中间间隙金属栅极的CMOS器件。 本发明提供了使用原位B掺杂外延层或B和C共掺杂外延层的反掺杂,其中C共掺杂提供了额外的自由度以减少B的扩散(也在随后的激活热循环期间) )以保持浅的B剖面,这对于提供具有中间间隙金属栅极的表面沟道CMOS器件而言是至关重要的,同时保持良好的短沟道效应。 对于具有中间间隙金属栅极的器件,B扩散曲线令人满意地浅,尖锐且具有高B浓度,以在栅极氧化物下提供并保持薄的高掺杂B层。
    • 3. 发明授权
    • MOSFET with super-steep retrograded island
    • 具超级陡峭退火岛的MOSFET
    • US07723750B2
    • 2010-05-25
    • US11774221
    • 2007-07-06
    • Huilong ZhuEffendi LeobandungAnda C. MocutaDan M. Mocuta
    • Huilong ZhuEffendi LeobandungAnda C. MocutaDan M. Mocuta
    • H01L29/737
    • H01L29/7842H01L21/26586H01L21/823807H01L21/823814H01L29/105H01L29/1608H01L29/6656H01L29/6659H01L29/66636H01L29/7833H01L29/7848
    • The present invention comprises a method for forming a semiconducting device including the steps of providing a layered structure including a substrate, a low diffusivity layer of a first-conductivity dopant; and a channel layer; forming a gate stack atop a protected surface of the channel layer; etching the layered structure selective to the gate stack to expose a surface of the substrate, where a remaining portion of the low diffusivity layer provides a retrograded island substantially aligned to the gate stack having a first dopant concentration to reduce short-channel effects without increasing leakage; growing a Si-containing material atop the recessed surface of the substrate; and doping the Si-containing material with a second-conductivity dopant at a second dopant concentration. The low diffusivity layer may be Si1-x-yGexZy, where Z can be carbon (C), xenon (Xe), germanium (Ge), krypton (Kr), argon (Ar), nitrogen (N), or combinations thereof.
    • 本发明包括一种形成半导体器件的方法,包括以下步骤:提供包括衬底,第一导电掺杂剂的低扩散层的分层结构; 和通道层; 在沟道层的受保护表面上方形成栅极堆叠; 蚀刻对栅极堆叠选择性的层状结构以暴露衬底的表面,其中低扩散层的剩余部分提供基本上与具有第一掺杂剂浓度的栅极堆叠对准的退化岛,以减少短沟道效应而不增加泄漏 ; 在衬底的凹陷表面的顶部生长含Si材料; 并且以第二掺杂剂浓度用第二导电掺杂剂掺杂含Si材料。 低扩散性层可以是Si1-x-yGexZy,其中Z可以是碳(C),氙(Xe),锗(Ge),氪(Kr),氩(Ar),氮(N)或它们的组合。
    • 9. 发明授权
    • Method of forming thin SGOI wafers with high relaxation and low stacking fault defect density
    • 形成具有高松弛和低堆垛层错缺陷密度的薄SGOI晶片的方法
    • US07550370B2
    • 2009-06-23
    • US10597066
    • 2004-01-16
    • Huajie ChenStephen W. BedellDevendra K. SadanaDan M. Mocuta
    • Huajie ChenStephen W. BedellDevendra K. SadanaDan M. Mocuta
    • H01L21/00
    • H01L21/76256H01L21/02381H01L21/0245H01L21/02532H01L21/02664H01L21/31658H01L21/84H01L29/1054H01L29/78687
    • A method of forming a silicon germanium on insulator (SGOI) structure. A SiGe layer is deposited on an SOI wafer. Thermal mixing of the SiGe and Si layers is performed to form a thick SGOI with high relaxation and low stacking fault defect density. The SiGe layer is then thinned to a desired final thickness. The Ge concentration, the amount of relaxation, and stacking fault defect density are unchanged by the thinning process. A thin SGOI film is thus obtained with high relaxation and low stacking fault defect density. A layer of Si is then deposited on the thin SGOI wafer. The method of thinning includes low temperature (550° C.-700° C.) HIPOX or steam oxidation, in-situ HCl etching in an epitaxy chamber, or CMP. A rough SiGe surface resulting from HIPOX or steam oxidation thinning is smoothed with a touch-up CMP, in-situ hydrogen bake and SiGe buffer layer during strained Si deposition, or heating the wafer in a hydrogen environment with a mixture of gases HCl, DCS and GeH4.
    • 一种形成绝缘体上硅锗(SGOI)结构的方法。 SiGe层沉积在SOI晶片上。 进行SiGe和Si层的热混合以形成具有高松弛和低堆垛层错缺陷密度的厚SGOI。 然后将SiGe层变薄至所需的最终厚度。 稀释过程,Ge浓度,松弛量和堆垛层错缺陷密度均不变。 因此获得了具有高松弛和低堆垛层错缺陷密度的薄SGOI膜。 然后在薄SGOI晶片上沉积一层Si。 稀释方法包括低温​​(550℃-700℃)HIPOX或蒸汽氧化,在外延室中进行原位HCl蚀刻或CMP。 由HIPOX或蒸汽氧化稀化产生的粗糙SiGe表面在应变Si沉积期间用接触式CMP,原位氢气烘烤和SiGe缓冲层进行平滑,或者在氢气环境中用HCl,DCS混合气体加热晶片 和GeH4。