会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • DEVICE AND METHOD FOR WAVEFRONT ANALYSIS
    • 用于波前分析的装置和方法
    • WO2017108349A1
    • 2017-06-29
    • PCT/EP2016/079136
    • 2016-11-29
    • CARL ZEISS SMT GMBHWEGMANN, Ulrich
    • WEGMANN, Ulrich
    • G03F7/20G01M11/02
    • G03F7/706G01M11/0271
    • The invention relates to a device and a method for wavefront analysis. A device for wavefront analysis, which is designed for analyzing the wavefront of at least one light wave passing through an optical system, comprises at least one illumination mask (105, 205, 305, 405, 406, 407), at least one first grating (120, 220, 320, 420), which has at least one first grating structure and generates an interferogram in a predefined plane from a wavefront to be analyzed which proceeds from the illumination mask and passes through the optical system, at least one second grating (130, 230, 330, 430) arranged in said predefined plane, said at least one second grating having at least one second grating structure and generating a superimposition pattern by the superimposition of the second grating structure with the interferogram generated by the first grating, and at least one detector (140, 240, 340, 440) for detecting said superimposition pattern.
    • 波前分析装置和方法技术领域本发明涉及用于波前分析的装置和方法。 用于分析经过光学系统的至少一个光波的波前而设计的用于波前分析的装置包括至少一个照射掩模(105,205,305,405,406,407),至少一个第一光栅 (120,220,320,420),其具有至少一个第一光栅结构并且在来自待分析波前的预定平面中产生干涉图,该干涉图从所述照明掩模出发并穿过所述光学系统, - 至少一个第二光栅 (130,230,330,430),所述至少一个第二光栅具有至少一个第二光栅结构并且通过将第二光栅结构与由第一光栅产生的干涉图的叠加而产生叠加图案, 和用于检测所述叠加图案的至少一个检测器(140,240,340,440)。
    • 4. 发明申请
    • SYSTEM FOR INTERFEROMETRICALLY MEASURING THE IMAGING QUALITY OF AN ANAMORPHIC PROJECTION LENS
    • 用于干涉测量投影透镜成像质量的系统
    • WO2018007211A1
    • 2018-01-11
    • PCT/EP2017/065889
    • 2017-06-27
    • CARL ZEISS SMT GMBH
    • WEGMANN, Ulrich
    • G01B9/02G01M11/00G01M11/02G03F7/20G01J9/02
    • G01M11/0264G01J9/0215G01J2009/0219G01M11/0271G03F7/706
    • A measuring method and a measuring system for interferometrically measuring the imaging quality of an optical imaging system are configured, by adapted design of measurement structures of associated structure carriers, to carry out a wavefront measurement on an imaging system which has a first imaging scale β 1 in a first direction and a second imaging scale β 2 in a second direction, perpendicular to the first direction, said second imaging scale differing from the first imaging scale by a scale ratio (β 1 / β 2 ) ≠ 1 (anamorphic imaging system). A first measurement structure (MS1) on a first structure carrier to be arranged on the object side of the imaging system has a two-dimensional mask structure suitable for shaping the coherence of measurement radiation. A second measurement structure (MS2) on a second structure carrier to be arranged on the image side of the imaging system has a diffraction grating. The first and second measurement structures are adapted to one another taking account of the scale ratio in such a way that an interference pattern arises upon an imaging of the first measurement structure (MS1) onto the second measurement structure (MS2) with the aid of the anamorphic imaging system.
    • 用于干涉测量光学成像系统的成像质量的测量方法和测量系统通过相关联的结构载体的测量结构的适应性设计来配置成在成像系统上执行波前测量 其具有在第一方向上的第一成像比例尺β1和在垂直于第一方向的第二方向上的第二成像比例尺β2,所述第二成像比例尺不同于 通过比例尺(β1/β2)≠1(变形成像系统)的第一成像比例。 将要布置在成像系统的物体侧上的第一结构载体上的第一测量结构(MS1)具有适合于成形测量辐射的相干性的二维掩模结构。 位于成像系统的图像侧上的第二结构载体上的第二测量结构(MS2)具有衍射光栅。 考虑到比例尺,第一和第二测量结构以这样的方式相互适配,即,在第一测量结构(MS1)成像到第二测量结构(MS2)上时,借助于 变形成像系统。
    • 5. 发明申请
    • MEASUREMENT SYSTEM FOR DETERMINING A WAVEFRONT ABERRATION
    • 用于确定波前偏差的测量系统
    • WO2018007008A1
    • 2018-01-11
    • PCT/EP2017/000792
    • 2017-07-05
    • CARL ZEISS SMT GMBH
    • WEGMANN, Ulrich
    • G01M11/02G01J9/02G03F7/20
    • G01M11/0271G01J9/0215G03F7/706G03F7/7085
    • The invention relates to a measurement system (10) for determining a wavefront aberration of an optical imaging system (12), comprising an irradiation device (24) for passing measurement radiation (26) through the imaging system (12), an analysis grating (30) which, disposed downstream of the imaging system (12), is arranged in the beam path (40) of the measurement radiation in a manner dis- placeable transversely to an optical axis (20) of the imaging system (12), and a detection device (32) for recording a radiation distribution of the measurement radiation (26). The measurement system (10) is configured to produce respective interferograms (62), formed by means of the analysis grating (30), at a plurality of displacement positions of the analysis grating (30) for the purposes of being reeorded on the detection device (32). Furthermore, the measurement system (10) is configured to ascertain at least one positional information item (78) of the analysis grating (30) in at least one of the displacement positions by means of a control beam path (46) that passes through the optical imaging system (12).
    • 本发明涉及用于确定光学成像系统(12)的波前像差的测量系统(10),其包括用于使测量辐射(26)通过成像系统(12)的辐照装置(24) (12)中,设置在所述成像系统(12)下游的分析光栅(30)以横向于所述测量辐射的光轴(20)的方式布置在所述测量辐射的光路(40)中, 成像系统(12)以及用于记录测量辐射(26)的辐射分布的检测装置(32)。 测量系统(10)被配置为在分析光栅(30)的多个位移位置处产生借助于分析光栅(30)形成的相应的干涉图(62),以用于重新放置在检测装置 (32)。 此外,测量系统(10)被配置成通过控制光束路径(46)确定分析光栅(30)的至少一个位移位置中的至少一个位置信息项(78),该控制光束路径穿过 光学成像系统(12)。
    • 6. 发明申请
    • METHOD FOR MEASURING AN OPTICAL SYSTEM
    • 测量光学系统的方法
    • WO2012076335A1
    • 2012-06-14
    • PCT/EP2011/070755
    • 2011-11-23
    • CARL ZEISS SMT GMBHKORB, ThomasHETTICH, ChristianLAYH, MichaelWEGMANN, UlrichSCHUSTER, Karl-HeinzMANGER, Matthias
    • KORB, ThomasHETTICH, ChristianLAYH, MichaelWEGMANN, UlrichSCHUSTER, Karl-HeinzMANGER, Matthias
    • G03F7/20
    • G01N21/94G01M11/02G01N21/9501G03F7/70483G03F7/708G03F7/7085
    • The invention relates to a method for measuring an optical system at the location of a measurement plane (409). The method comprises the following steps: - a first plurality of test beams (464a, 464b, 464c, 464d) of a radiation pass through the optical system and impinge on an identical first measurement region (461) in a measurement plane (409), wherein the test beams of the first plurality of test beams (464a, 464b, 464c, 464d) pass through the optical system on optical paths that differ in pairs and impinge on the first measurement region (461) at angles of incidence that differ in pairs with respect to the measurement plane (409), - a second plurality of test beams (465a, 465b, 465c, 465d) of a radiation pass through the optical system and impinge on an identical second measurement region (462) in the measurement plane (409), wherein the test beams of the second plurality of test beams (465a, 465b, 465c, 465d) pass through the optical system on optical paths that differ in pairs and impinge on the second measurement region (462) at angles of incidence that differ in pairs with respect to the measurement plane (409), wherein the second measurement region (462) differs from the first measurement region (461), - by means of a measuring device (469, 470), at least one associated measurement value of a first measurement variable of the test beam at the location of the first measurement region is detected for each test beam of the first plurality of test beams, - by means of a measuring device, at least one associated measurement value of a second measurement variable of the test beam at the location of the second measurement region is detected for each test beam of the second plurality of test beams, - an associated impingement region (467a, 467d, 468a, 468d) on at least one reference surface (466, 471) of the optical system is calculated or is determined with the aid of a database for each test beam of the first plurality of test beams (464a, 464b, 464c, 464d) and of the second plurality of test beams (465a, 465b, 465c, 465d), wherein the impingement region associated with a test beam is defined as the surface region of the at least one reference surface (466, 471) on which radiation of the respective test beam impinges, - a spatial diagnosis distribution of at least one property of the at least one reference surface is calculated from the measurement values and the impingement regions for each test beam.
    • 本发明涉及一种在测量平面位置测量光学系统的方法(409)。 该方法包括以下步骤: - 辐射的第一多个测试光束(464a,464b,464c,464d)通过光学系统并撞击在测量平面(409)中的相同的第一测量区域(461)上, 其中所述第一多个测试光束(464a,464b,464c,464d)的所述测试光束在成对不同的光路上穿过所述光学系统,并且以成对的不同的入射角入射在所述第一测量区域(461)上 相对于测量平面(409), - 辐射的第二多个测试光束(465a,465b,465c,465d)穿过光学系统并撞击测量平面中相同的第二测量区域(462) 409),其中所述第二多个测试光束(465a,465b,465c,465d)的测试光束在成对的光路上穿过所述光学系统,并以入射角撞击在所述第二测量区域(462)上, 不同的成对相对于 测量平面(409),其中所述第二测量区域(462)与所述第一测量区域(461)不同, - 借助于测量装置(469,470),至少一个相关测量值 对于第一多个测试光束的每个测试光束检测在第一测量区域的位置处的测试光束,借助于测量装置,在该位置处测试光束的第二测量变量的至少一个相关测量值 对于第二多个测试光束的每个测试光束检测第二测量区域, - 计算光学系统的至少一个参考表面(466,471)上的相关联的冲击区域(467a,467d,468a,468d) 或者借助于第一多个测试光束(464a,464b,464c,464d)和第二多个测试光束(465a,465b,465c,465d)中的每个测试光束的数据库来确定,其中冲击 与a相关联的区域 测试光束被定义为至少一个参考表面(466,471)的表面区域,各个测试光束的辐射在其上撞击, - 至少一个参考表面的至少一个性质的空间诊断分布由 每个测试光束的测量值和冲击区域。