会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Epitaxial thin films
    • 外延薄膜
    • US20050019594A1
    • 2005-01-27
    • US10862605
    • 2004-06-07
    • Andrew HuntGirish DeshpandeWen-Yi LinTzyy-Jiuan Hwang
    • Andrew HuntGirish DeshpandeWen-Yi LinTzyy-Jiuan Hwang
    • B32B9/00B32B15/04
    • H01M8/124B01D53/228B01D67/0072B01D71/024B01D2256/12B01D2325/22B01D2325/26C23C16/453H01G4/1209H01G4/33H01M8/0687H01M8/1253Y02E60/525Y02P70/56Y10T29/49115Y10T29/5313Y10T29/53135Y10T29/532Y10T29/53204
    • Epitaxial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal grain boundary/interface microstructure, Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed of high-quality, dense, gas-tight, pinhole free sub-micron scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.
    • 公开了用作高温超导体的缓冲层的外延薄膜,固体氧化物燃料电池(SOFC)中的电解质,电子装置中的气体分离膜或电介质材料。 通过使用CCVD,CACVD或任何其它合适的沉积工艺,可以形成具有无孔,理想晶界和致密结构的外延膜。 公开了几种不同类型的材料用作高温超导体中的缓冲层。 此外,在SOFC中使用外延薄膜用于电解质和电极形成导致无孔和理想的晶界/界面微结构的致密化,还公开了用于生产氧和氢的气体分离膜。 这些半渗透膜由多孔陶瓷基板上的高质量,致密,气密,无针孔的亚微米级的混合导电氧化物层形成。 本文还介绍了作为电容器中的介电材料的外延薄膜。 根据电容值的物理结构和介电常数,使用电容器。 本发明的外延薄膜形成具有极高介电常数的低损耗介电层。 这种高介电常数允许形成可以通过在它们的电极之间施加直流偏压来调整其电容的电容器。
    • 3. 发明授权
    • Advanced radiant gas burner and method utilizing flame support rod
structure
    • 先进的辐射气体燃烧器和利用火焰支撑杆结构的方法
    • US5641282A
    • 1997-06-24
    • US395823
    • 1995-02-28
    • K. J. LeeJoe K. Cochran, Jr.Tzyy-Jiuan Hwang
    • K. J. LeeJoe K. Cochran, Jr.Tzyy-Jiuan Hwang
    • F23D14/16F23D3/40F23D14/14
    • F23D14/16F23D2203/102F23D2203/105F23D2212/101F23D2212/103F23D2212/105F23D2900/14122
    • A high intensity and high efficiency radiant gas burner (10) has a housing (8), a gas inlet (11) for receiving a combustible gas, a gas injection plate (13) for distributing the gas, a gas distribution chamber (16) for permitting the gas to expand, a porous ceramic layer (17) for receiving the gas from the gas distribution chamber (16), and a plurality of elongated flame support rods (23) situated over and spaced from a burner surface (17b) of the porous ceramic layer (17). When the gas is ignited, the flame transfers energy via convective heat transfer to the rods (23). When the rods (23) heat up, they radiate energy back towards the burner surface (17b) and also outwardly away from the burner surface (17b) so that radiation intensity and efficiency are optimized. A rod adjustment mechanism (84) may be disposed on the burner (10) for moving the rods (23) to thereby optimize radiation intensity and efficiency. Moreover, a temperature sensor may be disposed within a rod (23) for monitoring the temperature of the flame support rod structure (81). The temperature signal (82) can be used to control the position of the rods (23) via the rod adjustment mechanism (84) and/or a gas adjustment mechanism (88) for manipulating the rate or contents of the combustible gas.
    • 高强度和高效率的辐射气体燃烧器(10)具有壳体(8),用于容纳可燃气体的气体入口(11),用于分配气体的气体注入板(13),气体分配室(16) 用于允许气体膨胀的多孔陶瓷层(17),用于从气体分配室(16)接收气体;以及多个细长火焰支撑杆(23),位于燃烧器表面(17b)的上方并与燃烧器表面 多孔陶瓷层(17)。 当气体被点燃时,火焰通过对流热传递到杆(23)来传递能量。 当杆(23)加热时,它们将辐射能量朝向燃烧器表面(17b)反射并且向外远离燃烧器表面(17b),从而优化辐射强度和效率。 杆调节机构(84)可设置在燃烧器(10)上,用于移动杆(23),从而优化辐射强度和效率。 此外,温度传感器可以设置在用于监测火焰支撑杆结构(81)的温度的杆(23)内。 温度信号(82)可用于通过杆调节机构(84)和/或气体调节机构(88)来​​控制杆(23)的位置,用于操纵可燃气体的速率或内容物。